scholarly journals Empirical models for estimating properties of developed composite material from agro waste

2010 ◽  
Vol 7 (2) ◽  
pp. 347-354
Author(s):  
J. O. Osarenmwinda ◽  
J. C Nwachukwu

Study was carried out to develop an empirical models for estimating the properties of developed composite material from agro waste (sawdust and palm kernel shell). The properties of the produced composite materials from agro waste obtained in previous experimental investigation were used to determine empirical model for hardness, yield strength, ultimate tensile strength, modulus of elasticity; modulus of rupture, internal bond strength, density, thickness swelling and water absorption .The values obtained from the empirical models were found to compare favourably with the experimental values. The mean percentage error were determined to be -0.02167% (hardness), -0.462167%( yield strength),-0.03625 (ultimate tensile strength), -0.01045% (modulus of elasticity), -0.044057% (modulus of rupture), 0.001033% (internal bond strength),0.2153%(density), 0.5277% (thickness swelling) and 0.1365% (water absorption). These values were insignificant and below the maximum recommended error of 10%. These model performance were therefore found to be satisfactory and show good predictability.

Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

Study was carried out to develop a composite material from agro waste consisting of sawdust and palm kernel shell and to determine its physical and mechanical properties. The sawdust / palm kernel shell compositions by weight were in the ratios of 100: 0, 90: 10, 80: 20, 70: 30, 60: 40 and 50:50. Urea formaldehyde was used as the test binder at concentrations of 20% of oven dry weight of agro waste. Particle size of agro waste used was 300µm .Yield strength, ultimate tensile strength, modulus of elasticity, modulus of rupture, internal bond strength, density, thickness swelling and water absorption of the formed composite materials were determined and observed to be enhanced at high palm kernel shell composition. The composite composition by weight that gave the best results out of the six compositions tested was the one with sawdust: palm kernel composition of 50%:50% with its properties as: yield strength ( 4.47 N/mm2) ,ultimate tensile strength (7.75 N/mm2), modulus of elasticity (2603 N/mm2), modulus of rupture (16.67 N/mm2 ), internal bond strength ( 0.54 N/mm2 ), thickness swelling (10.30%) ,water absorption (18.90%) and density (996.18kg/m3).


Holzforschung ◽  
2013 ◽  
Vol 67 (6) ◽  
pp. 659-665 ◽  
Author(s):  
Jian Huang ◽  
Kai Gu ◽  
Kaichang Li

Abstract Three novel curing agents (I, II, and III) were synthesized from epichlorohydrin and ammonium hydroxide. The combinations of soy flour (SF) with one of the curing agents (SF-I, SF-II, and SF-III) were investigated as adhesives for making interior plywood. Water resistance tests showed that plywood panels bonded with SF-I and SF-III adhesives met the requirements of interior plywood, whereas those bonded with SF-II did not. The modulus of rupture, modulus of elasticity, and internal bond strength of particleboard panels bonded with the SF-II adhesive all exceeded the corresponding minimum industrial requirements for M-2 grade particleboard.


2007 ◽  
Vol 18-19 ◽  
pp. 43-48 ◽  
Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

The purpose of this study was to determine the effect of particle size on the mechanical properties (Modulus of Elasticity, Modulus of Rupture, and Internal Bond) and physical properties (thickness swelling and water absorption) of rice husk particleboard. The particle sizes used were 1.0mm, 1.18mm, 2mm, 2.36mm and 2.80mm. Each was mixed with a constant resin (urea formaldehyde) concentration of 20% of oven dry weight of rice husk particles. The results showed that as the particle size increased, the particleboard’s mechanical and physical properties decreased. For example, the modulus of elasticity, modulus of rupture, internal bond, thickness swelling and water absorption for 1.0mm particle size particleboard were 1590N/mm2, 11.11N/mm2, 0.28N/mm2,10.90% and 38.53% respectively, while for 2.8mm particle size they were 1958N/mm2,14.2N/mm2, 0.44N/mm2, 11.51% and 47.21% respectively. Overall results showed that particleboard made from rice husk exceed the EN standard for modulus of elasticity, modulus of rupture, internal bond. However, thickness swelling values were poor. Hence, the smaller the particle size the better the properties of the particleboard.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5829-5842
Author(s):  
Octavia Zeleniuc ◽  
Adela-Eliza Dumitrascu ◽  
Valentina Doina Ciobanu

Oriented strand boards (OSB) are widely used in construction replacing plywood. There are four types of boards (OSB/1, OSB/2, OSB/3, OSB/4) carried out depending on the conditions of uses. The present research aimed to evaluate the physical and mechanical performance of these types of boards, with 10 mm, 11 mm, 18 mm and 22 mm thicknesses. The boards were industrially manufactured using the continue press line. The results showed that the compression grade increased with decreasing of the wood strands densities, from 1.3 (OSB/1) to 1.1 (OSB/3). Thickness swelling values were lower for OSB/3 and OSB/2 with 35% and 14%, when compared to OSB/1. For these boards a slight increase in adhesive content and a lower speed of pressing line was set considering that they are designated for the exterior use. An increase in density with about 7.6% led to an increase with about 19% of modulus of rupture (MOR), when compare OSB 10 mm with OSB 22 mm. Improvements with 27% to 22% MOR and 13% to 10% modulus of elasticity (MOE) in case of OSB/3 and OSB/2 compared to OSB/1 were found. Internal bond (IB) values were with about 32% higher for OSB/3 than those reached by OSB/1 and the thinner boards registered 25% higher IB values even after boiling test, compared to the thicker ones.


2016 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

A palm oil mill with a capacity of hundred thousand tons of fresh fruit bunches per year will produce palm fiber waste about 12,000 tons. Recently, the use of palm empty fruit bunches (OPEFB) fiber is as fuel for electricity generation in the industry. Palm fiber waste contains lignocellulose materials as a feedstock to particle board manufacture. The aim of this research is to evaluate the properties of particle board from a mixture of OPEFB fiber and sawdust. The ratio of OPEFB fiber and sawdust are 100% : 0%; 75% : 25%; 50% : 50%; 25% : 75% and 0% : 100%, plus urea formaldehyde adhesive in a concentration of 11%. The boards were pressed using a clamp pressure of 16 kg/cm2 for 15 minutes at a temperature of 110 – 120 0C. The testing methods and standards of physical properties (moisture contents, thickness swelling, density) and mechanical (modulus of elasticity/MOE, modulus of rupture/MOR, screw withdrawal and internal bond strengths) refers to the SNI. 03 – 2105 - 2006. The results showed that the particle board made from 100% OPEFB fiber produces modulus of elasticity/MOE 1594.88 kg/cm2; modulus of rupture/MOR 18.08 kg/cm2; screw withdrawal 31.34 kg/cm2 and internal bond strength 0.86 kg/cm2. The addition of sawdust for 50% can improve modulus of elasticity/MOE, modulus of rupture/MOR and internal bond strength.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7780-7795
Author(s):  
Halil İbrahim Şahin

Wood particles and a mixture of forest waste were investigated as raw material for the particleboard industry. Urea formaldehyde resin was used as the adhesive in the production of the particleboards. Some chemical (pH, dilute alkali solubility, hot and cold water solubility), physical (density, moisture, thickness swelling, and water absorption), mechanical (modulus of rupture, modulus of elasticity, internal bond strength, and screw holding strength) properties, as well as the contact angle values of the resulting particleboards were determined. Due to its needle litter and cone content, the forest waste exhibited a lower pH value and a higher content of extractive material than wood. Increasing the addition of forest waste led to significant reductions in the physical and mechanical properties of the particleboards. The addition of forest waste reduced the internal bond strength the most (56.6%), whereas the least reduction (15.7%) was in the value of screw holding strength perpendicular to the surface. The values of all panels except panel type F exceeded the minimum modulus of elasticity (1600 N mm-2) required for furniture production according to the EN 312-P2 standard. Results of the analyses showed that forest waste (10% and 20%) is a suitable renewable raw material source for panel production.


2021 ◽  
Vol 115 ◽  
pp. 55-62
Author(s):  
Stella Rzyska-Pruchnik ◽  
Grzegorz Kowaluk

The influence of particleboard resination on their internal bond strength. The aim of the project was to investigate the main mechanical and physical properties of particleboards, especially focused on internal bond, in terms of their resination. For the tests, the particleboards have been produced in laboratory conditions with the following glue content: 7, 10, 15, 30 and 50%. Particular attention was paid for examining the mechanical property – tensile strength perpendicular to surfaces (Internal Bond – IB). In addition, there were investigated modulus of elasticity (MOE), modulus of rupture (MOR) density and density profile. In the light of above mentioned tests, there is no positive effect of improvement of tested parameters when raise resination over 30% when producing particleboards. With the resination increase from 7 to 50% a significant change (densification) of panels’ structure, as well as differences between face and core layers density have been found.


2014 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Budi Tri Cahyana

This research aimed to get the physical and mechanical properties of non adhesive-particle board from oil palm empty fruit bunches. The oil palm empty fruit bunches were degradated to fibre and boiled in boiling water during 60 minute then dried in ± 2 weeks. The dried raw material was chopped to be fibre in 5 mesh, 10 mesh, and 16 mesh. It were complied into a mold and then hot pressed in 35 kgf/cm2 pressure during 10 minute with 3 of temperature variety, 160°C, 180°C and 200°C. The result showed that the average of particle board water content was 7,11 -  9,85 % and the density was 0,63 – 0,76 gr/cm3. The highest thickness swelling was 22,59 % in 10 mesh and 160 0C (a2b1) temperature of oil palm empty fruit bunches. The modulus of rupture was 211,67 kg/cm2  in 10 mesh and 180 0C (a2b2) temperature. The modulus of elasticity was 490,85 kg/cm2 in 10 mesh and 160 0C (a2b1) temperature. The tensile strength was 7,49 kg/cm2 in 5 mesh and 200 0C (a1b3) temperature. The average of physical and mechanical properties such as water content, density, modulus of rupture, tensile strength were fulfill the SNI requirement, while the average of thickness swelling and modulus of elasticity were not fulfill the SNI requirement.Keywords: oil palm empty fruit bunches, particle board


PERENNIAL ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 75
Author(s):  
Sahriyanti Saad ◽  
. Hilal

The effect of particle composition made of bamboo and water hyacinth on the dimensional stability and mechanical properties of resulted oriented strand boards (OSB) were investigated. Three layered boards were made from bamboo and water hyacinth in which bamboo strand was used as face/back layer and water hyacinth strand was used as core layer. The boards were manufactured using three levels of bamboo and water hyacinth compositions (50:50, 60:40 and 70:30) with 6 % isocyanate based on the strand oven dry weight. The results showed that dimensional stability of the OSB decreased with the increase of composition of water hyacinth strand on core layer. A higher composition of bamboo strand as face/back layer compared to water hyacinth strand resulted in increased modulus of elasticity and internal bond strength, but decreased the modulus of rupture. The bamboo and water hyacinth composition of 70:30 compositions showed better properties than other compositions. Key words: Bamboo, water hyacinth, composition, OSB


Sign in / Sign up

Export Citation Format

Share Document