scholarly journals PENGARUH KOMPOSISI FACE-CORE TERHADAP SIFAT FISIK DAN MEKANIS ORIENTED STRAND BOARD DARI BAMBU DAN ECENG GONDOK

PERENNIAL ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 75
Author(s):  
Sahriyanti Saad ◽  
. Hilal

The effect of particle composition made of bamboo and water hyacinth on the dimensional stability and mechanical properties of resulted oriented strand boards (OSB) were investigated. Three layered boards were made from bamboo and water hyacinth in which bamboo strand was used as face/back layer and water hyacinth strand was used as core layer. The boards were manufactured using three levels of bamboo and water hyacinth compositions (50:50, 60:40 and 70:30) with 6 % isocyanate based on the strand oven dry weight. The results showed that dimensional stability of the OSB decreased with the increase of composition of water hyacinth strand on core layer. A higher composition of bamboo strand as face/back layer compared to water hyacinth strand resulted in increased modulus of elasticity and internal bond strength, but decreased the modulus of rupture. The bamboo and water hyacinth composition of 70:30 compositions showed better properties than other compositions. Key words: Bamboo, water hyacinth, composition, OSB

Holzforschung ◽  
2013 ◽  
Vol 67 (6) ◽  
pp. 659-665 ◽  
Author(s):  
Jian Huang ◽  
Kai Gu ◽  
Kaichang Li

Abstract Three novel curing agents (I, II, and III) were synthesized from epichlorohydrin and ammonium hydroxide. The combinations of soy flour (SF) with one of the curing agents (SF-I, SF-II, and SF-III) were investigated as adhesives for making interior plywood. Water resistance tests showed that plywood panels bonded with SF-I and SF-III adhesives met the requirements of interior plywood, whereas those bonded with SF-II did not. The modulus of rupture, modulus of elasticity, and internal bond strength of particleboard panels bonded with the SF-II adhesive all exceeded the corresponding minimum industrial requirements for M-2 grade particleboard.


2016 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

A palm oil mill with a capacity of hundred thousand tons of fresh fruit bunches per year will produce palm fiber waste about 12,000 tons. Recently, the use of palm empty fruit bunches (OPEFB) fiber is as fuel for electricity generation in the industry. Palm fiber waste contains lignocellulose materials as a feedstock to particle board manufacture. The aim of this research is to evaluate the properties of particle board from a mixture of OPEFB fiber and sawdust. The ratio of OPEFB fiber and sawdust are 100% : 0%; 75% : 25%; 50% : 50%; 25% : 75% and 0% : 100%, plus urea formaldehyde adhesive in a concentration of 11%. The boards were pressed using a clamp pressure of 16 kg/cm2 for 15 minutes at a temperature of 110 – 120 0C. The testing methods and standards of physical properties (moisture contents, thickness swelling, density) and mechanical (modulus of elasticity/MOE, modulus of rupture/MOR, screw withdrawal and internal bond strengths) refers to the SNI. 03 – 2105 - 2006. The results showed that the particle board made from 100% OPEFB fiber produces modulus of elasticity/MOE 1594.88 kg/cm2; modulus of rupture/MOR 18.08 kg/cm2; screw withdrawal 31.34 kg/cm2 and internal bond strength 0.86 kg/cm2. The addition of sawdust for 50% can improve modulus of elasticity/MOE, modulus of rupture/MOR and internal bond strength.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7780-7795
Author(s):  
Halil İbrahim Şahin

Wood particles and a mixture of forest waste were investigated as raw material for the particleboard industry. Urea formaldehyde resin was used as the adhesive in the production of the particleboards. Some chemical (pH, dilute alkali solubility, hot and cold water solubility), physical (density, moisture, thickness swelling, and water absorption), mechanical (modulus of rupture, modulus of elasticity, internal bond strength, and screw holding strength) properties, as well as the contact angle values of the resulting particleboards were determined. Due to its needle litter and cone content, the forest waste exhibited a lower pH value and a higher content of extractive material than wood. Increasing the addition of forest waste led to significant reductions in the physical and mechanical properties of the particleboards. The addition of forest waste reduced the internal bond strength the most (56.6%), whereas the least reduction (15.7%) was in the value of screw holding strength perpendicular to the surface. The values of all panels except panel type F exceeded the minimum modulus of elasticity (1600 N mm-2) required for furniture production according to the EN 312-P2 standard. Results of the analyses showed that forest waste (10% and 20%) is a suitable renewable raw material source for panel production.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7901-7915
Author(s):  
Ümit Büyüksarı ◽  
Ömer Özyürek

Bio-composites were produced from untreated (UT) and hydro-thermally treated (HTT) wheat straw (WS) particles and wood, and their dimensional stability and mechanical properties were investigated. The HTT treatment consisted of subjecting the WS particles to a steam explosion process for 8 min at 180 °C. The HTT and UT WS particles were mixed with the wood particles at 10, 20, 30, and 40% ratios. The physical properties, including density, water absorption (WA), and thickness swelling (TS), were determined for the bio-based composites. The mechanical properties evaluated included the modulus of rupture, modulus of elasticity, and internal bond strength. Statistical analyses showed that the hydro-thermal treatment and the WS ratio had significant effects on the dimensional stability and mechanical properties of the bio-composites. The WA of the composites after 2-h and 24-h rose significantly when the HTT WS particle ratio was increased from 10 to 40%. The 2-h and 24-h WA values of HTT-10 were 6.3% and 5.3% lower than those of UT-10, respectively. Improvements in the 2-h TS value were achieved by the HTT WS particles at the 10% ratio, and in the 24-h TS value at the 10 and 40% ratios. The mechanical properties of the composites were higher in the HTT group, but decreased in both the UT and HTT groups as the WS ratio increased.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2632 ◽  
Author(s):  
Marius Cătălin Barbu ◽  
Yasmin Lohninger ◽  
Simon Hofmann ◽  
Günther Kain ◽  
Alexander Petutschnigg ◽  
...  

The aim of this study is to investigate the formaldehyde content and emissions of bark-based insulation panels bonded with three types of adhesives: urea formaldehyde, melamine urea-formaldehyde, and tannin-based adhesives. These panels were produced at two levels of density—300 and 500 kg/m3—and a thickness of 20 mm, and the influence of the adhesive amount and type on the formaldehyde emissions and content was measured. Other mechanical and physical properties such as modulus of rupture, modulus of elasticity, internal bond, and dimensional stability were also scrutinized. With one exception, all the panels belonged to the super E0 classification for free formaldehyde content (perforator value ≤1.5 mg/100 g oven dry mass of panels). The measurements using the desiccator method for formaldehyde emissions assigned all the testing specimens in the F **** category for low-emission panels according to the Japanese International Standards.


2010 ◽  
Vol 7 (2) ◽  
pp. 347-354
Author(s):  
J. O. Osarenmwinda ◽  
J. C Nwachukwu

Study was carried out to develop an empirical models for estimating the properties of developed composite material from agro waste (sawdust and palm kernel shell). The properties of the produced composite materials from agro waste obtained in previous experimental investigation were used to determine empirical model for hardness, yield strength, ultimate tensile strength, modulus of elasticity; modulus of rupture, internal bond strength, density, thickness swelling and water absorption .The values obtained from the empirical models were found to compare favourably with the experimental values. The mean percentage error were determined to be -0.02167% (hardness), -0.462167%( yield strength),-0.03625 (ultimate tensile strength), -0.01045% (modulus of elasticity), -0.044057% (modulus of rupture), 0.001033% (internal bond strength),0.2153%(density), 0.5277% (thickness swelling) and 0.1365% (water absorption). These values were insignificant and below the maximum recommended error of 10%. These model performance were therefore found to be satisfactory and show good predictability.


2014 ◽  
Vol 1051 ◽  
pp. 273-277
Author(s):  
Chun Gui Du ◽  
Jian Gang Song

This paper presents a study on the different fire retardant treatment technologies influence on the physical and mechanical properties of bamboo particleboard. The results showed: the properties of bamboo particleboard would change with changing of fire retardant treatment technology; among them the treated technology of fire retardant spraying after resin blending had larger changed; compared with non-fire retardant bamboo particleboard, the density and moisture content (MC) and 2h thickness swell (2h TS) of fire retardant bamboo particleboard had a little improved, and their internal bond (IB) and modulus of rupture (MOR) and modulus of elasticity (MOE) had slightly reduced.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1125
Author(s):  
Jakob Gößwald ◽  
Marius Cătălin Barbu ◽  
Alexander Petutschnigg ◽  
Ľuboš Krišťák ◽  
Eugenia Mariana Tudor

Planer shavings (PS) are side-products generated during the processing of solid wood, typically used for heating, packaging, or insulation purposes. PS has been used for decades in particleboard manufacture, particularly in the core layer. The aim of this research is to investigate the use of PS with a length over 4 mm in low-density one-layer particleboard manufacturing with a thickness of 10 mm, as an option to reduce the raw material demand for wood-based panels. Correlations towards the mechanical properties of the particleboards, fabricated at a density of 475 kg/m3, could be drawn by analyzing the effects of different urea-formaldehyde adhesive contents (6%, 9%, and 12%). Two methods of adhesive application (pouring and spraying) and two types of blending of PS with adhesive (plowshare mixer and drum mixer) were investigated, with the aim that PS will have controlled resin application. The difference between the adhesive application methods was examined by analyzing the mechanical properties as an internal bond, modulus of rupture, and modulus of elasticity as well as indirectly by visualizing the adhesive distribution by adding a green pigment to the adhesive before application. PS demonstrated reduced bending properties in comparison with the EN 312 standard requirements of particleboards for internal use in dry conditions (type P2), due to the low density. The internal bond strength in the case of the particleboard without pigment application (up to 0.5 N/mm2) was higher compared to the P2 requirements (0.4 N/mm2), and significantly lower (0.15 N/mm2) in combination with the pigment (2.5% based on the board weight, compared to 0.1%, specific for such industry applications), but still superior to the values of the reference panel manufactured with wood particles.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Sign in / Sign up

Export Citation Format

Share Document