Development of Composite Material from Agricultural Wastes

Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

Study was carried out to develop a composite material from agro waste consisting of sawdust and palm kernel shell and to determine its physical and mechanical properties. The sawdust / palm kernel shell compositions by weight were in the ratios of 100: 0, 90: 10, 80: 20, 70: 30, 60: 40 and 50:50. Urea formaldehyde was used as the test binder at concentrations of 20% of oven dry weight of agro waste. Particle size of agro waste used was 300µm .Yield strength, ultimate tensile strength, modulus of elasticity, modulus of rupture, internal bond strength, density, thickness swelling and water absorption of the formed composite materials were determined and observed to be enhanced at high palm kernel shell composition. The composite composition by weight that gave the best results out of the six compositions tested was the one with sawdust: palm kernel composition of 50%:50% with its properties as: yield strength ( 4.47 N/mm2) ,ultimate tensile strength (7.75 N/mm2), modulus of elasticity (2603 N/mm2), modulus of rupture (16.67 N/mm2 ), internal bond strength ( 0.54 N/mm2 ), thickness swelling (10.30%) ,water absorption (18.90%) and density (996.18kg/m3).

2010 ◽  
Vol 7 (2) ◽  
pp. 347-354
Author(s):  
J. O. Osarenmwinda ◽  
J. C Nwachukwu

Study was carried out to develop an empirical models for estimating the properties of developed composite material from agro waste (sawdust and palm kernel shell). The properties of the produced composite materials from agro waste obtained in previous experimental investigation were used to determine empirical model for hardness, yield strength, ultimate tensile strength, modulus of elasticity; modulus of rupture, internal bond strength, density, thickness swelling and water absorption .The values obtained from the empirical models were found to compare favourably with the experimental values. The mean percentage error were determined to be -0.02167% (hardness), -0.462167%( yield strength),-0.03625 (ultimate tensile strength), -0.01045% (modulus of elasticity), -0.044057% (modulus of rupture), 0.001033% (internal bond strength),0.2153%(density), 0.5277% (thickness swelling) and 0.1365% (water absorption). These values were insignificant and below the maximum recommended error of 10%. These model performance were therefore found to be satisfactory and show good predictability.


2021 ◽  
Vol 115 ◽  
pp. 55-62
Author(s):  
Stella Rzyska-Pruchnik ◽  
Grzegorz Kowaluk

The influence of particleboard resination on their internal bond strength. The aim of the project was to investigate the main mechanical and physical properties of particleboards, especially focused on internal bond, in terms of their resination. For the tests, the particleboards have been produced in laboratory conditions with the following glue content: 7, 10, 15, 30 and 50%. Particular attention was paid for examining the mechanical property – tensile strength perpendicular to surfaces (Internal Bond – IB). In addition, there were investigated modulus of elasticity (MOE), modulus of rupture (MOR) density and density profile. In the light of above mentioned tests, there is no positive effect of improvement of tested parameters when raise resination over 30% when producing particleboards. With the resination increase from 7 to 50% a significant change (densification) of panels’ structure, as well as differences between face and core layers density have been found.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Author(s):  
Aleksandr B. VOROZHTSOV ◽  
◽  
Vladimir V. PLATOV ◽  
Aleksandr A. KOZULIN ◽  
Anton P. KHRUSTALEV ◽  
...  

In this work, the special master alloys containing aluminum and TiB2 powder with bimodal particle size distribution in three mixture compositions are prepared. The master alloys are infused into the melts using an external ultrasound source. The castings with particles had smaller grain sizes than the initial castings without particles. It is found that the hardness, yield strength, and ultimate tensile strength reach higher values with an increase in the relative elongation of the cast alloys with added particles. A warm rolling mode is employed for the studied alloys to obtain sheet blanks. It is shown that the staged shrinkage of the billets up to deformation of 80 % with periodic heating up to 300 °C allows one to obtain defect-free sheet products. The structure of the rolled sheet-alloys is characterized by the plate-shaped grains elongated along the rolling direction with pockets of submicron-sized grains in between. The strength properties of the studied rolled alloys exceeded those of the cast alloys. In the case of the rolled alloys, an increase in the yield strength, ultimate tensile strength, and ductility is revealed for the alloys with particles as compared to the ones with no particles added.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Ayu Rizeki Ridhowati ◽  
Eka Febriyanti ◽  
Rini Riastuti

Warm rolling is one of the thermomechanical method has several advantages such as produces high mechanical properties, but does not decrease % elongation and toughness value because partial recrystallization phenomenon that produces micron-sized new grain. This paper reports the results of an investigation carried out on the effects of holding time annealing to mechanical properties Cu-Zn 70/30 alloy. These alloy after homogenization process and quenched in the air then heated to temperature of 300°C, later the heated copper samples are warm rolled at 25%, 30%, and 35% reduction, after that heated at temperature 300°C and held during 120 minutes. Then sample is experienced rewarm rolling with reduction 25%, 30%, and 35%. The results obtained showed that the ultimate tensile strength and yield strength are higher proportional with the increasing of % reduction, their values are 501,1 MPa; 599,3 MPa; later decrease to 546, 5 MPa and to yield strength are 441,8 MPa; 466,1 MPa; then decrease to 458,6 MPa. Moreover hardness value increase proportional with % reduction such as 154 HV; 162 HV; after that decrease to 160 HV While, % elongation decreases inversely proportional with % reduction namely 12,4%; 8,2%; later increase to 11,2 %. It is caused of the partial recrystallization phenomenon as evidenced by the presence micron-sized.AbstrakWarm rolling merupakan salah satu metode termomekanik yang mempunyai beberapa keuntungan yaitu salah satunya menghasilkan sifat mekanik yang tinggi, namun tidak mengurunkan nilai keuletan karena adanya fenomena rekristalisasi parsial yang menghasilkan butiran baru berbentuk micron. Paper ini menjelaskan tentang hasil penelitian berupa pengaruh persentase reduksi terhadap sifat mekanis paduan Cu-Zn 70/30. Paduan Cu-Zn 70/30 setelah dilakukan proses homogenisasi dan didinginkan di udara lalu dipanaskan ke suhu 300°C, kemudian masing-masing dilakukan warm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35% kemudian ditahan di suhu 300°C dalam waktu 120 menit. Selanjutnya sampel dilakukan rewarm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35%. Hasil penelitian yang dilakukan antara lain nilai kekuatan tarik (UTS dan YS) yang semakin tinggi sebanding dengan peningkatan % reduksi warm rolling yaitu masing-masing untuk nilai UTS sebesar 501,1 MPa; 599,3 MPa; lalu menurun menjadi 546,5 MPa serta untuk nilai kekuatan luluh sebesar 441,8 MPa; 466,1 MPa; lalu menurun menjadi 458,6 MPa. Selain itu, nilai kekerasan meningkat sebanding dengan peningkatan % reduksi warm rolling masing-masing sebesar 154 HV; 162 HV; lalu menurun menjadi 160 HV. Sedangkan persentase elongasi semakin menurun berbanding terbalik dengan peningkatan % reduksi masing-masing sebesar 12,4%; 8,2%; lalu meningkat menjadi 11,2%. Hal tersebut disebabkan karena adanya fenomena rekristalisasi parsial yang dibuktikan dengan kehadiran butir kecil berukuran mikron.Keywords : Cu-Zn 70/30 alloy, warm rolling, anneal, % reduction, mechanical properties


2019 ◽  
Vol 22 (2) ◽  
pp. 143-150
Author(s):  
Hussain J. M. Al-Alkawi ◽  
Abduljabbar Owaid Hanfesh ◽  
Saja Mohammed Noori Mohammed Rauof

This research is devoted to study the influence of different weight percent concerning to the additions of Ti and Cu on mechanical and tribological properties of AA6061. The composite materials consist of different weight percentage of Ti (0.2, 0.4, and 0.6) wt% and constant weight percentage of Cu (0.2) wt% which were fabricated by liquid metallurgy route technique. Microstructural characterization and phases have been examined by using SEM (scanning electron microscopic).SEM examination showed uniform distribution of nano Ti and Cu in AA6061. The consequences of mechanical tests demonstrated clear enhancement in mechanical properties, such as ultimate tensile strength, yield strength, young modulus, ductility% and hardness at additive percentage of 0.4% Ti+0.2%Cu nano particles incorporated into molten AA6061. Percentage of enhancement ultimate tensile strength is about 73.3%, yield strength about 82.7%, young modulus is about 21.2%, the  Vickers hardness about 42.6% and the decreasing in ductility was about 25.2% compared with the metal matrix (AA6061). The wear rate test was performed by using pin on disc rig for both hybrid nano composite and base metal (AA6061) under various loads (10,15and 20) N with sliding speed (1.282) m/sec at a (10) min’s time. The results showed a decrease in wear rate at 0.4%Ti+0.2%Cu compared with the base metal (AA6061). Improvement percentage of wear rate is about 105% at 20 N load.


2020 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Ragil Widyorini ◽  
Ikhwan Syahri ◽  
Greitta Kusuma Dewi

Bambu memiliki kandungan ekstraktif dengan persentase yang berbeda antar jenis bambu. Penelitian ini bertujuan untuk mengetahui pengaruh perlakuan ekstraksi pada jenis bambu yang berbeda terhadap sifat papan partikel. Dua jenis bambu digunakan yaitu Bambu Petung (Dendrocalamus asper) dan Bambu Wulung (Gigantochloa atroviolacea). Perlakuan ekstraksi digunakan pada partikel bambu sebelum proses pembuatan papan partikel yaitu tanpa ekstraksi, ekstraksi air dingin dan ekstraksi air panas. Papan partikel dibuat dalam ukuran 25 cm x 25 cm x 0,7 cm, target kerapatan 0,9 g/cm3, jumlah asam sitrat 30%, serta kondisi pengempaan suhu 180°C selama 10 menit. Hasil penelitian menunjukkan bahwa interaksi perlakuan ekstraksi dan jenis bambu hanya berpengaruh signifikan pada sifat penyerapan air dan keteguhan rekat internal, sedangkan jenis bambu berpengaruh signifikan pada nilai kadar air, modulus patah dan modulus elastisitas. Semua papan partikel yang dihasilkan memenuhi standar Japanese Industrial Standard (JIS) A 5908 tipe 13. Pada penelitian ini, papan partikel dari bambu wulung tanpa perlakuan ekstraksi mempunyai nilai yang memenuhi standar tipe 18 dan berpotensi sebagai bahan baku untuk produk furnitur eksterior. Perlakuan ekstraksi dapat meningkatkan secara signifikan nilai keteguhan rekat internal papan partikel bambu petung, walaupun secara umum dengan jumlah asam sitrat 30% perlakuan tersebut tidak diperlukan pada papan partikel bambu Properties of Particleboard made from Petung Bamboo (Dendrocalamus asper) and Wulung Bamboo (Gigantochloa atroviolacea) Particles with Extraction TreatmentAbstractBamboo has extractives, which the percentage of extractive was different based on bamboo species. This research aimed to investigate the effect of extraction treatment at different bamboo species on the particleboard properties. Two types of bamboo were used, i.e. Petung bamboo (Dendrocalamus asper) and Wulung bamboo (Gigantochloa atroviolacea). Three extraction treatments were conducted to the bamboo particles before the particleboard manufacture, i.e. unextracted, cold-water extraction, and hot-waterextraction. The particleboard was made in the size of 25 cm x 25 cm x 0.7 cm, target density of 0.9 g/cm³, citric acid content of 30%, and pressing temperature of 180°C for 10 min. The results showed that the interaction between extraction treatment and bamboo species significantly affected on the water absorption and internal bond strength, however bamboo species affected significantly on the moisture content, modulus of rupture, and modulus of elasticity. All of particleboards could met the requirement of the 13 type of Japanese Industrial Standard (JIS) A 5908. In this research, particleboards made from wulung bamboo particles without extraction treatment have properties that met the requirement of the 18 type and the products have potential to be as exterior materials for furniture. In general, an extraction treatment was not an important step on the manufacturing of bamboo particleboard using citric acid 30% as adhesive. However, the extraction treatment could increase significantly the internal bond strength of particleboard made from petung bamboo.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4149-4170
Author(s):  
Thanh Tung Nguyen ◽  
Adam Redman ◽  
William Leggate ◽  
Luigi-j Vandi ◽  
Henri Bailleres ◽  
...  

The compaction behavior of cotton stalk particle mats, temperature profile inside the particle mats, and influence of surface particle size were studied relative to the properties of three-layered cotton stalk particleboards. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bond, and thickness swelling were used as a measure for mechanical and physical performance. Two types of cotton stalk particleboard were manufactured. Results indicated that compression stiffness of the particle mat increased with increasing particle size; however, it decreased with increasing mat moisture content and temperature. At mat moisture contents of 12% and 18%, the plateau temperature at the centerline was not significantly different between boards having coarse and fine particles. However, the plateau time of boards with coarse particles was significantly lower than that of boards with fine particles. Additionally, thickness swelling of boards with a surface particle size of 2 mm was significantly lower than that of boards with surface particle size of 4 mm. Boards with a surface particle size of 2 mm had MOR and MOE values 15% and 10% higher, respectively, than boards with surface particle size of 4 mm. Internal bond decreased 6.5% with decreasing surface particle size from 4 mm to 2 mm.


Sign in / Sign up

Export Citation Format

Share Document