scholarly journals Investigation of Acid and Enzyme Wheat Straw Hydrolysis for Obtaining Polysaccharides

2019 ◽  
Vol 35 (2) ◽  
pp. 766-772
Author(s):  
Zhaksylyk Baumanuly Makhatov ◽  
Bakhytzhan Shilmirzaevich Kedelbayev ◽  
Madina Dzhakashyeva ◽  
Amina Daulbai ◽  
Bibilgul Zaydullayevna Doltayeva ◽  
...  

The processes of acid and enzymatic hydrolysis of wheat straw in the presence of the strain Aspergillus awamori F-RKM 0719 has been studied. Enzymatic hydrolysis is the most promising method of processing plant biomass. When carrying out the enzymatic hydrolysis of cellulosic materials, the yield of sugars reaches less than 20% of the theoretically possible yield. Overcoming the physico-chemical barriers that hamper the availability of cellulose for enzymes is an important issue, the solution of which is directly related to the search for low-cost pre-treatment methods for raw materials. The effectiveness of this process determines the yield of the target product in the process of enzymatic hydrolysis of cellulose and the economic feasibility of the entire technology as a whole.

Author(s):  
V. S. Boltovsky

Plant raw materials are practically an inexhaustible natural resource, since they are constantly renewed in the process of plant photosynthesis, which determines the prospects for their use for industrial processing in various ways, including hydrolytic. The main biopolymer components of plant biomass in terms of their quantitative content are polysaccharides, the hydrolytic processing of which by acidic or enzymatic hydrolysis leads to the formation of monosaccharides and various products obtained from them. This review of scientific literature analyzes theoretical concepts and the current state of research on the development, improvement and prospects for the use of enzymatic hydrolysis of plant raw materials. The efficiency of this process and the composition of the resulting products largely depend on the features of the supramolecular structure of cellulose, the content of hemicelluloses and lignin in the raw material, the balance and activity of the cellulase complex of enzymes. It is shown that the main directions of development and improvement of the processes of enzymatic hydrolysis of plant raw materials at present are the production and use of more effective strains of microorganisms that produce highly active enzymes, the directed creation of complex enzymes (hydrolyzing not only cellulose, but also hemicellulose, as well as destroying lignin), the development of methods for pretreatment of raw materials to increase the reactivity of cellulose and remove lignin and improve the processes of fermentolysis.


2021 ◽  
Vol 10 (11) ◽  
pp. e149101118914
Author(s):  
Letícia Renata Bohn ◽  
Aline Perin Dresch ◽  
Matheus Cavali ◽  
Ana Carolina Giacomelli Vargas ◽  
Jaíne Flach Führ ◽  
...  

The demand for ethanol in Brazil is growing. However, although the country is one of the largest producers of this fuel, it is still necessary to diversify the production matrix. In that regard, studies with different raw materials are needed, mainly the use of low cost and high available wastes such as lignocellulosic residues from agriculture. Therefore, this study aimed to analyze the bioethanol production from corn stover. An alkaline pretreatment (CaO) was carried out, followed by enzymatic hydrolysis (Cellic Ctec2 and Cellic Htec2) to obtain fermentable sugars. The best experimental condition for the pretreatment and hydrolysis steps resulted in a solution with 0.31 gsugar∙gbiomass-1. Then, the fermentation was performed by the industrial strain of Saccharomyces cerevisiae (PE-2) and by the wild yeast strain Wickerhamomyces sp. (UFFS-CE-3.1.2). The yield obtained was 0.38 gethanol∙gdry biomass-1 was, demonstrating the potential of this process for bioethanol production.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


2005 ◽  
Vol 48 (spe) ◽  
pp. 135-142 ◽  
Author(s):  
Adriano Aguiar Mendes ◽  
Heizir Ferreira de Castro

The objective of this work was to evaluate the replacement of Gum Arabic for sodium chloride to reduce fat and organic contents in dairy wastewater using two low cost commercially available lipase preparations from animal source (Kin Master - LKM and Nuclear- LNU). The best performance was achieved when lipase Nuclear (LNU) was used as catalyst. In addition, this lipase preparation has also lower cost, which makes its use a quite promising technique for reduction of suspended solids as proteins and lipids contents found in wastewater generated by dairy industries.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2012 ◽  
Vol 87 (2) ◽  
pp. 1280-1285 ◽  
Author(s):  
Greta Radeva ◽  
Ivo Valchev ◽  
Stoiko Petrin ◽  
Eva Valcheva ◽  
Petya Tsekova

Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2020 ◽  
pp. 103-110
Author(s):  
Larysa Sablii ◽  
Oleksandr Obodovych ◽  
Vitalii Sydorenko ◽  
Tamila Sheyko

This paper presents the results of studies of isolation lignin and hemicelluloses efficiency during the pre-treatment of wheat straw for hydrolysis in a rotary-pulsation apparatus. The pre-treatment of lignocellulosic raw materials for hydrolysis is a necessary step in the second-generation bioethanol production technology. The lignocellulose complex is destroyed during this process, and this allows hydrolytic enzymes access to the surface of cellulose fibers. The pre-treatment is the most energy-consuming stage in bioethanol production technology, since it usually occurs at high temperature and pressure for a significant time. One of the ways to improve the efficiency of this process is the use of energy-efficient equipment that allows intensifying heat and mass transfer. An example of such equipment is a rotary-pulsation apparatus, which are effective devices in stirring, homogenization, dispersion technologies, etc. The treatment of wheat straw in a rotary-pulsation apparatus was carried out under atmospheric pressure without external heat supply at solid/water ratios of 1:10 and 1:5 in the presence of alkali. It was determined that the treatment of the water dispersion of straw at ratio of 1:10 due to the energy dissipation during 70 minutes leads to the release of 42 % of lignin and 25.76 % of easily hydrolyzed polysaccharides. Changing the solid / water ratio from 1:10 to 1:5 leads to an increase in the yield of lignin and easily hydrolyzed polysaccharides to 58 and 33.38 %, respectively.


2010 ◽  
Vol 85 (9) ◽  
pp. 1291-1297 ◽  
Author(s):  
Pablo Alvira ◽  
María José Negro ◽  
Felicia Sáez ◽  
Mercedes Ballesteros

Sign in / Sign up

Export Citation Format

Share Document