Synthesis and Photocatalytic Properties of the Bi2MoO6 and Bi2WO6 Photocatalysts

2018 ◽  
Vol 768 ◽  
pp. 218-223
Author(s):  
Juan Xia ◽  
Lin Zhang ◽  
Qi Wang

Two different Bi-based semiconductor photocatalysts Bi2MoO6 and Bi2WO6 were synthesized by a simple one-pot hydrothermal reaction at 453 K for 10 h. The properties of the photocatalysts, including structures, morphology, light-absorption band and photoluminescence, etc were characterized by X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectrum and fluorescence spectrum. Further, their photocatalytic properties were compared by the degradation of two different organic dyes: Rhodamine B and methylene blue. It is important to note that the Bi2WO6 nanoplate structure exhibited better photocatalytic activity than the Bi2MoO6 nanowires aggregates due to its high surface area, higher light absorption and lower recombination of electron-hole pairs.

2019 ◽  
Vol 35 (4) ◽  
pp. 1407-1413
Author(s):  
Pasinee Panith ◽  
Worawat Wattanathana ◽  
Wanchai Deeloed ◽  
Ratthapit Wuttisarn ◽  
Suttipong Wannapaiboon ◽  
...  

Magnesium silicate hydrate was synthesized for using as an adsorbent for different commercial organic dyes. X-ray diffraction (XRD) confirmed the crystalline phase of magnesium silicate hydrate. Some characteristic absorption bands of the magnesium silicate hydrate structure were observed in the Fourier transform infrared spectroscopy (FTIR) spectrum which supported the result identified from XRD data. Analysis of surface area and porosity by surface area analyzer showed that the synthesized magnesium silicate had high surface area of 634.63 m2/g and also showed the average BJH pore size of 3.72 nm. Insight into the sorption isotherm curve, the hysteresis characteristic was clearly observed suggesting a presence of mesopores within the obtained material. Dye adsorption study revealed that the synthesized adsorbent had the strongest affinity to the cationic dye (methylene blue) on account of the negative charge on the surface of the adsorbent. Hence, the adsorption of methylene blue was reached the equilibrium at the fastest time. In all, the results showed a possibility to apply this prepared magnesium silicate materials as a selective adsorbent for cationic dyes.


2019 ◽  
Vol 16 (4) ◽  
pp. 0886 ◽  
Author(s):  
Sobh Et al.

In this paper, we have extracted Silica from rice husk ash (RHA) by sodium hydroxide to produce sodium silicate. 3-(chloropropyl)triethoxysilane (CPTES) functionalized with sodium silicate via a sol-gel method in one pot synthesis to prepare RHACCl. Chloro group in compound RHACCl replacement in iodo group to prepere RHACI. The FT-IR clearly showed absorption band of C-I at 580 cm-1. Functionalized silica RHACI has high surface area (410 m2/g) and average pore diameter (3.8 nm) within mesoporous range. X-ray diffraction pattern showed that functionalized silica RHACI has amorphous phase .Thermogravemitric analysis (TGA) showed two decomposition stages and SEM morphology of RHACI showed that the particles have irregular shape. Atomic force microscope (AFM) technique was proved that the RHACI  has a nanostructure The XPS spectra of I 3d for all the studied surfaces are presented in the peak located at 618.5 eV binding energy was associated with C–I bond.


NANO ◽  
2015 ◽  
Vol 10 (07) ◽  
pp. 1550106 ◽  
Author(s):  
Shenshen Ouyang ◽  
Linfei Wang ◽  
Jing Cui ◽  
Haibo Shi ◽  
Tao Wang ◽  
...  

Controlling the synthesis of noble metal nanostructures with highly branched morphology to obtain specific physical and chemical properties has attracted much attention. This paper reports the synthesis of 3D Pt nanodendrites with controlled architectures (multibranched) by a simple one-pot hydrothermal reaction in the presence of fructose. At high reaction temperature, fructose not only acts as a reducing agent, but also forms a hydrothermal carbon, which, as a capping agent, is absorbed on the surface of metal nanocrystals and induces the anisotropic growth of Pt nanodendrites. The prepared Pt nanodendrites are highly porous, and have self-supported nanoarchitectures with a high surface area and a number of absorption sites for reactant molecules. The Pt nanodendrites exhibit a higher electrocatalytic activity and stability than commercial Pt / C for methanol oxidation reaction.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 854 ◽  
Author(s):  
Hanbo Xiao ◽  
Cheng-an Tao ◽  
Yujiao Li ◽  
Xianzhe Chen ◽  
Jian Huang ◽  
...  

Herein, a facile dopamine assisted one-pot synthesis approach is proposed for the preparation of porous carbon with a specific surface area (SSA) up to 2593 m2/g through the direct pyrolysis of a mixture of glucose, NH4Cl, and dopamine hydrochloride (DAH). The glucose is adopted as the carbon source and foaming agent, NH4Cl is used as the blowing agent, and DAH is served as collaborative carbon precursor as well as the nitrogen source for the first time. The effect of dopamine on the component, structure, and SSA of the as-prepared porous carbon materials are systematically studied. The moderate addition of dopamine, which influences the condensation and polymerization of glucose, matches better with ammonium salt decomposition. The SSA of porous carbon increases first and then decreases with the increasing amount of dopamine. In our case, the porous carbon produced with 5 wt% dopamine (PC-5) achieves the maximum SSA of up to 2593 m2/g. Accordingly, it also shows the greatest electrochemical performance. The PC-5 shows a capacitance of 96.7 F/g calculated from the discharge curve at 1 A/g. It also has a good capacitive rate capacity, the specific capacitance can still maintain 80%, even at a high current density of 10 A/g. Moreover, PC-5 exhibits a good cycling stability of 98.1% capacitive retention after 1000 cycles. The proposed method may show promising prospects for preparing porous carbon materials as advanced energy storage materials, storage, and catalyst supports.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Maria E. Manríquez ◽  
Luis Enrique Noreña ◽  
Jin An Wang ◽  
Lifang Chen ◽  
Jose Salmones ◽  
...  

The photocatalytic degradation of 4-chlorophenol in water using Ru-doped ZnO mixed oxides (0, 0.5, 1, and 3 wt% RuO2) synthesized by the one-pot homogeneous coprecipitation method is reported. ZnO with wurtzite structure was present in the mixed oxide as corroborated by Raman spectroscopy and X-ray diffraction analysis. All the samples showed nanorod morphological features. The presence of Ru6+/Ru4+ couples on ZnO modified the band gap of the mixed oxides and led to a shift of the band gap energy from 3.20 eV to 3.07 eV. Ru addition increased the surface area and significantly promoted the formation of active surface oxygen species such as hydroradicals evidenced by the fluorescence spectroscopy measurement. In the photodegradation of 4-chlorophenol solution under UV irradiation, a notable increase in photoactivity was obtained as the amount of RuO2 in the mixed oxides increased to 3 wt%. The charge transfer between Ru6+/Ru4+ couples and ZnO nanoparticles together with the formation of free radical oxidant species effectively inhibits electron-hole recombination rate, thus favoring the photodegradation of 4-chlorophenol.


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2020 ◽  
Vol 9 (4) ◽  
pp. 93-99
Author(s):  
Hung Mac Van ◽  
Tuan Vu Anh

Corals-like molybdenum disulfide (MoS2) have been successfully synthesized via the hydrothermal method. The as-prepared MoS2 material with a high surface area of 83.9 m2.g-1 was used for the removal of tartrazine from an aqueous solution. The effects of parameters including contact time, MoS2 dosage, and solution pH on adsorption capacity were studied. The optimal dosage of MoS2 for removing tartrazine was 0.08 g and the removal efficiency of tartrazine reached 81.5 % for 100 min of adsorption. The adsorption kinetics studies were carried out using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The results showed that the pseudo-second-kinetic model better described the adsorption kinetics of tartrazine on MoS2 and film diffusion was the rate-limiting step. In addition, the adsorption capacity of MoS2 was also performed with various organic dyes such as nile blue, janus green B, and congo red.


Sign in / Sign up

Export Citation Format

Share Document