scholarly journals Method Development and Validation for the Trace Level Quantification of Genotoxic Impurity Oseltamivir Phosphate Related Compound-a in Oseltamivir Phosphate Using LC-MS

2021 ◽  
Vol 37 (5) ◽  
pp. 1192-1198
Author(s):  
Pikkili Viswanath ◽  
Doddipalli Venkata Ramana Reddy ◽  
Nagaraju Chamarthi

A selective and sensitive method has been developed for the determination of ethyl-(3S,4R,5S)-4-acetamido-5-amino-2-azido-3-(pentan-3-yloxy)cyclohexanecarboxylate (OSPRC-A) by using liquid chromatography coupled with mass spectrometer with single mass analyzer (LC-MS).The method was developed by using column DEVELOSIL ODS-UG-5, (50×3.0 mm, 5.0 µm) with linearity range of 0.005% to 0.0151% which meets to quantification level of 150% range. The column oven temperature was maintained at 40ºC. The flow rate was set as 1.5 mL/min. Injection volume was 10 µL and the detection wavelength was 215 nm. The signal to noise ratio values obtained were found to be 4.79 at concentration level of 0.00015% for the limit of detection (LOD) and 13.46 at concentration level of 0.0005% for the limit of quantification (LOQ). The % recovery was found to be in between the range 80.0% to 101.32% at LOQ to 150% level. The result obtained in method precision and intermediate precision are found to be within the specification limit. The percentage RSD for the content of OSPRC-A of method precision was 4.26. The percentage RSD for the content of OSPRC-A for intermediate precision was 4.00. The sample prepared in analytical solution was found to be stable for 24 h. This method can be used for the identification of impurity, OSPRC-A in Oseltamivir phosphate drug substances in its manufacturing.

2020 ◽  
Vol 10 (6) ◽  
pp. 49-56
Author(s):  
Sneha Jagnade ◽  
Pushpendra Soni ◽  
Lavakesh Kumar Omray

The aim of present study was to investigate the development and validation of a green analytical method for the determination of aspirin and domperidone. Method Development and Validation for Estimation of Domperidone and Aspirin in bulk or formulation by using RP-HPLC. The RP-HPLC method was developed for estimation of Aspirin and Domperidone in synthetic mixture by isocratically using 10 mM KH2PO4: Acetonitrile (20:80) as mobile phase, Prontosil C-18 column (4.6 x 250 mm, 5μparticle size) column as stationary phase and chromatogram was recorded at 231 nm. Then developed method was validated by using various parameters such as, linearity, Range accuracy, precision repeatability, intermediate precision, robustness, limit of detection, limit of quantification. The proposed methods were found to be linear with correlation coefficient close to one. Precision was determined by repeatability, Intermediate precision and reproducibility of the drugs. The robustness of developed method was checked by changing in the deliberate variation in solvent. The result obtained shows the developed methods to be Cost effective, Rapid (Short retention time), Simple, Accurate (the value of SD and % RSD less than 2), Precise and can be successfully employed in the routine analysis of these drugs in bulk drug as well as in tablet dosage form. The Simplicity, Rapidly and Reproducibility of the proposed method completely fulfill the objective of this research work. Keywords: Asprin; Domperidone; HPLC; Ultra Violet; Validation


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Author(s):  
Pushpa Latha E. ◽  
Sailaja B.

Analytical UV derivative spectrophotometric method was developed and validated to quantify Rizatriptan Benzoate in pure drug and tablet dosage form. Based on the spectrophotometric characteristics of Rizatriptan Benzoate, a signal of zero (225nm), first (216nm), second (237nm), third (233nm), fourth (231nm) order derivative spectra were found to be adequate for quantification. The methods obeyed Beer's law in the concentration range of (0.1-360µg/ml) with square correlation coefficient (r2) of 0.999. The mean percentage recovery was found to be 100.01 ± 0.075. As per ICH guidelines the results of the analysis were validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification, and were found to be satisfactory.


2021 ◽  
pp. 1-11
Author(s):  
Sultan M. Alshahrani ◽  
John Mark Christensen

This study was designed to develop and validate a simple and efficient high performance liquid chromatography (HPLC) method to determine flunixin concentrations in Asian elephant’s (Elephas maximus) plasma. Flunixin was administered orally at a dose of 0.8 mg/kg, and blood samples were collected. Flunixin extraction was performed by adding an equal amount of acetonitrile to plasma and centrifuging at 4500 rpm for 25 minutes. The supernatant was removed, and flunixin was analyzed using HPLC-UV detection. Two methods were developed and tested utilizing two different mobile phases either with or without adding methanol (ACN: H2O vs. ACN: H2O: MeOH). Both methods showed excellent linearity and reproducibility. The limit of detection was 0.05 ug/ml and limit of quantification was 0.1 ug/ml. the efficiency of flunixin recovery was maximized by the addition of methanol to mobile phase (ACN: H2O: MeOH as 50:30:20) at 95% in comparison to 23% without methanol. In conclusion, adding methanol to HPLC methods for extraction of flunixin from elephants’ plasma yielded higher recovery rate than without methanol.


Author(s):  
Anas Rasheed ◽  
Osman Ahmed

A specific, precise, accurate ultra pressure liquid chromatography (UPLC) method is developed for estimation of chlophedianol hydrochloride in bulk drug and syrup dosage form. The method employed with Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 μm) in a gradient mode, with mobile phase of methanol and acetonitrile in the ratio of 65:35 %v/v. The flow rate was 0.1 ml/min and effluent was monitored at 254 nm. Retention time was found to be 1.130±0.005 min. The method was validated in terms of linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ)in accordance with ICH guidelines. Linear regression analysis data for the calibration plot showed that there was good linear relationship between response and concentration in the range of 20-100 μg/ml respectively. The LOD and LOQ values were found to be 2.094(μg/ml)and 6.3466(μg/ml)respectively. No chromatographic interference from syrup excipients and degradants were found. The proposed method was successfully used for estimation of chlophedianol hydrochloride in syrup dosage form.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 59-65
Author(s):  
Vinita C. Patole ◽  
Shilpa P. Chaudhari ◽  

An attempt was made to develop a simple, selective, rapid and precise high-performance liquid chromatography (HPLC) method for simultaneous estimation of thymol and eugenol. Analysis was performed on a C18 column with the mobile phase consisting of solvent %A (water) and solvent %B (acetonitrile) with the following gradient: 0–1 min, 80 % A, 20 % B; 1–7 min, 40 % A and 60 % B; 7–12 min, 10 % A and 90 % B; and 12–15min, 80 % A and 20 % B at a flow rate of 0.6 mL/min. The compounds were well separated on a Thermo Scientific Hypersil BDS RP C18 column (4.6 mm × 150 mm, dp = 5 µm) and ultraviolet detection at 280 nm. The retention times of eugenol and thymol were 10.5 min and 11.6 min, respectively. Validation of the proposed method was carried out according to the guidelines of the International Council on Harmonization (ICH). The linearity of the method is good for thymol and eugenol over the concentration range of 1–50 ppm, and the r 2 values were 0.9996 for both thymol and eugenol. The calculated limit of detection (LOD) value was 0.5ppm and the limit of quantification (LOQ) value was 1ppm for both the analytes. The intra and interday relative standard deviation (RSD) of the retention time and peak areas was less than 3 %.The established method was appropriate, and the two markers were well resolved, enabling efficient quantitative analysis of thymol and eugenol.


2018 ◽  
Vol 68 (2) ◽  
pp. 171-183
Author(s):  
Béla Kovács ◽  
Lajos Kristóf Kántor ◽  
Mircea Dumitru Croitoru ◽  
Éva Katalin Kelemen ◽  
Mona Obreja ◽  
...  

Abstract A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.


Drug Research ◽  
2020 ◽  
Vol 70 (09) ◽  
pp. 417-423
Author(s):  
Beena Kumari ◽  
Aparna Khansili

Abstract Background Vildagliptin is an antidiabetic agent, belongs to the dipeptidyl peptidase IV (DPP-4) inhibitors. Objective The aim of investigation was to develop a simple UV-visible Spectrophotometric method for the determination of vildagliptin in its pure form and pharmaceutical formulations, further to validate the developed method. Material and Methods Vildagliptin was estimated using UV-Visible double beam spectrophotometer at the wavelength of maximum absorption (210 nm) in acidic medium containing 0.1N HCl. The drug was characterized by melting point, Differential Scanning Calorimetry (DSC), and Fourier Transform Infra-Red (FTIR) techniques. The analysis of the drug was carried out by novel UV-Visible method which was validated analytical parameters like linearity, precision, and accuracy as per guidelines laid down by International Conference on Harmonization (ICH). Result Melting point of drug was found 154°C which is corresponds to its actual melting range. Similarly by the interpretation of spectra the drug was confirmed. The linear response for concentration range of 5–60 µg/ml of vildagliptin was recorded with regression coefficient 0.999. The accuracy was found between 98–101%. Precision for intraday and interday was found to be 1.263 and 1.162 respectively, which are within the limits. To establish the sensitivity of the method, limit of detection (LOD) and limit of quantification (LOQ) were determined which were found to be 0.951 µg/ml and 2.513 µg/ml respectively. Conclusion The UV method developed and validated for vildagliptin drug was found to be linear, accurate, precise and economical which can be used for the testing of its pharmaceutical formulations.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


2019 ◽  
Vol 31 (1) ◽  
pp. 32-39
Author(s):  
Suman Shrivastava ◽  
Pooja Deshpande ◽  
S. J. Daharwal

Development of a method is crucial for discovery, development, and analysis of medicines in the pharmaceutical formulation. Method validation could also be thought to be one in all the foremost well-known areas in analytical chemistry as is reproduced within the substantial variety of articles submitted and presented in peer review journals every year. Validation of an analytical procedure is to demonstrate that it's appropriate for its intended purpose. Results from method validation are often wont to decide the quality, reliability and consistency of analytical results. Analytical methods need to be validated or revalidated. This review describes general approach towards validation process and validation parameters to be considered during validation of an analytical method. It also refers to various regulatory requirements like WHO, USFDA, EMEA, ICH, ISO/IEC. The parameters described here are according to ICH guidelines which include accuracy, precision, specificity, limit of detection, limit of quantification, linearity range and robustness.


Sign in / Sign up

Export Citation Format

Share Document