scholarly journals A Review on Cyber Security and the Fifth Generation Cyberattacks

2019 ◽  
Vol 12 (2) ◽  
pp. 50-56
Author(s):  
A. Saravanan ◽  
S. Sathya Bama

Cyber attacks have become quite common in this internet era. The cybercrimes are getting increased every year and the intensity of damage is also increasing. providing security against cyber-attacks becomes the most significant in this digital world. However, ensuring cyber security is an extremely intricate task as requires domain knowledge about the attacks and capability of analysing the possibility of threats. The main challenge of cybersecurity is the evolving nature of the attacks. This paper presents the significance of cyber security along with the various risks that are in the current digital era. The analysis made for cyber-attacks and their statistics shows the intensity of the attacks. Various cybersecurity threats are presented along with the machine learning algorithms that can be applied to cyber attacks detection. The need for the fifth generation cybersecurity architecture is discussed.

Author(s):  
Valliammal Narayan ◽  
Barani Shaju

This chapter aims to discuss applications of machine learning in cyber security and explore how machine learning algorithms help to fight cyber-attacks. Cyber-attacks are wide and varied in multiple forms. The key benefit of machine learning algorithms is that it can deep dive and analyze system behavior and identify anomalies which do not correlate with expected behavior. Algorithms can be trained to observe multiple data sets and strategize payload beforehand in detection of malware analysis.


2021 ◽  
Author(s):  
Meng Ji ◽  
Yanmeng Liu ◽  
Tianyong Hao

BACKGROUND Much of current health information understandability research uses medical readability formula (MRF) to assess the cognitive difficulty of health education resources. This is based on an implicit assumption that medical domain knowledge represented by uncommon words or jargons form the sole barriers to health information access among the public. Our study challenged this by showing that for readers from non-English speaking backgrounds with higher education attainment, semantic features of English health texts rather than medical jargons can explain the lack of cognitive access of health materials among readers with better understanding of health terms, yet limited exposure to English health education materials. OBJECTIVE Our study explored combined MRF and multidimensional semantic features (MSF) for developing machine learning algorithms to predict the actual level of cognitive accessibility of English health materials on health risks and diseases for specific populations. We compare algorithms to evaluate the cognitive accessibility of specialised health information for non-native English speaker with advanced education levels yet very limited exposure to English health education environments. METHODS We used 108 semantic features to measure the content complexity and accessibility of original English resources. Using 1000 English health texts collected from international health organization websites, rated by international tertiary students, we compared machine learning (decision tree, SVM, discriminant analysis, ensemble tree and logistic regression) after automatic hyperparameter optimization (grid search for the best combination of hyperparameters of minimal classification errors). We applied 10-fold cross-validation on the whole dataset for the model training and testing, calculated the AUC, sensitivity, specificity, and accuracy as the measured of the model performance. RESULTS Using two sets of predictor features: widely tested MRF and MSF proposed in our study, we developed and compared three sets of machine learning algorithms: the first set of algorithms used MRF as predictors only, the second set of algorithms used MSF as predictors only, and the last set of algorithms used both MRF and MSF as integrated models. The results showed that the integrated models outperformed in terms of AUC, sensitivity, accuracy, and specificity. CONCLUSIONS Our study showed that cognitive accessibility of English health texts is not limited to word length and sentence length conventionally measured by MRF. We compared machine learning algorithms combing MRF and MSF to explore the cognitive accessibility of health information from syntactic and semantic perspectives. The results showed the strength of integrated models in terms of statistically increased AUC, sensitivity, and accuracy to predict health resource accessibility for the target readership, indicating that both MRF and MSF contribute to the comprehension of health information, and that for readers with advanced education, semantic features outweigh syntax and domain knowledge.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 444 ◽  
Author(s):  
Valerio Morfino ◽  
Salvatore Rampone

In the fields of Internet of Things (IoT) infrastructures, attack and anomaly detection are rising concerns. With the increased use of IoT infrastructure in every domain, threats and attacks in these infrastructures are also growing proportionally. In this paper the performances of several machine learning algorithms in identifying cyber-attacks (namely SYN-DOS attacks) to IoT systems are compared both in terms of application performances, and in training/application times. We use supervised machine learning algorithms included in the MLlib library of Apache Spark, a fast and general engine for big data processing. We show the implementation details and the performance of those algorithms on public datasets using a training set of up to 2 million instances. We adopt a Cloud environment, emphasizing the importance of the scalability and of the elasticity of use. Results show that all the Spark algorithms used result in a very good identification accuracy (>99%). Overall, one of them, Random Forest, achieves an accuracy of 1. We also report a very short training time (23.22 sec for Decision Tree with 2 million rows). The experiments also show a very low application time (0.13 sec for over than 600,000 instances for Random Forest) using Apache Spark in the Cloud. Furthermore, the explicit model generated by Random Forest is very easy-to-implement using high- or low-level programming languages. In light of the results obtained, both in terms of computation times and identification performance, a hybrid approach for the detection of SYN-DOS cyber-attacks on IoT devices is proposed: the application of an explicit Random Forest model, implemented directly on the IoT device, along with a second level analysis (training) performed in the Cloud.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150020
Author(s):  
Luke Holbrook ◽  
Miltiadis Alamaniotis

With the increase of cyber-attacks on millions of Internet of Things (IoT) devices, the poor network security measures on those devices are the main source of the problem. This article aims to study a number of these machine learning algorithms available for their effectiveness in detecting malware in consumer internet of things devices. In particular, the Support Vector Machines (SVM), Random Forest, and Deep Neural Network (DNN) algorithms are utilized for a benchmark with a set of test data and compared as tools in safeguarding the deployment for IoT security. Test results on a set of 4 IoT devices exhibited that all three tested algorithms presented here detect the network anomalies with high accuracy. However, the deep neural network provides the highest coefficient of determination R2, and hence, it is identified as the most precise among the tested algorithms concerning the security of IoT devices based on the data sets we have undertaken.


2018 ◽  
Vol 10 (8) ◽  
pp. 76 ◽  
Author(s):  
Marcio Teixeira ◽  
Tara Salman ◽  
Maede Zolanvari ◽  
Raj Jain ◽  
Nader Meskin ◽  
...  

This paper presents the development of a Supervisory Control and Data Acquisition (SCADA) system testbed used for cybersecurity research. The testbed consists of a water storage tank’s control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks were conducted against the testbed. During the attacks, the network traffic was captured, and features were extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms were trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naïve Bayes and KNN. Then, the trained machine learning models were built and deployed in the network, where new tests were made using online network traffic. The performance obtained during the training and testing of the machine learning models was compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environments.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
John Bollenbacher ◽  
Diogo Pacheco ◽  
Pik-Mai Hui ◽  
Yong-Yeol Ahn ◽  
Alessandro Flammini ◽  
...  

AbstractTo what extent can we predict the structure of online conversation trees? We present a generative model to predict the size and evolution of threaded conversations on social media by combining machine learning algorithms. The model is evaluated using datasets that span two topical domains (cryptocurrency and cyber-security) and two platforms (Reddit and Twitter). We show that it is able to predict both macroscopic features of the final trees and near-future microscopic events with moderate accuracy. However, predicting the macroscopic structure of conversations does not guarantee an accurate reconstruction of their microscopic evolution. Our model’s limited performance in long-range predictions highlights the challenges faced by generative models due to the accumulation of errors.


2021 ◽  
Author(s):  
Arvind Thorat

<div>In the above research paper we describe the how machine learning algorithm can be applied to cyber security purpose, like how to detect malware, botnet. How can we recognize strong password for our system. And detail implementation of Artificial Intelligence and machine learning algorithms is mentioned.</div>


2021 ◽  
Vol 9 (2) ◽  
pp. 1214-1219
Author(s):  
Sheha kothari, Et. al.

Artificial intelligence (AI) has made incredible progress, resulting in the most sophisticated software and standalone software. Meanwhile, the cyber domain has become a battleground for access, influence, security and control. This paper will discuss key AI technologies including machine learning in an effort to help understand their role in cyber security and the implications of this new technology. This paper discusses and highlights the different uses of machine learning in cyber security.


Author(s):  
K L Malanchev ◽  
M V Pruzhinskaya ◽  
V S Korolev ◽  
P D Aleo ◽  
M V Kornilov ◽  
...  

Abstract We present results from applying the SNAD anomaly detection pipeline to the third public data release of the Zwicky Transient Facility (ZTF DR3). The pipeline is composed of 3 stages: feature extraction, search of outliers with machine learning algorithms and anomaly identification with followup by human experts. Our analysis concentrates in three ZTF fields, comprising more than 2.25 million objects. A set of 4 automatic learning algorithms was used to identify 277 outliers, which were subsequently scrutinised by an expert. From these, 188 (68%) were found to be bogus light curves – including effects from the image subtraction pipeline as well as overlapping between a star and a known asteroid, 66 (24%) were previously reported sources whereas 23 (8%) correspond to non-catalogued objects, with the two latter cases of potential scientific interest (e. g. 1 spectroscopically confirmed RS Canum Venaticorum star, 4 supernovae candidates, 1 red dwarf flare). Moreover, using results from the expert analysis, we were able to identify a simple bi-dimensional relation which can be used to aid filtering potentially bogus light curves in future studies. We provide a complete list of objects with potential scientific application so they can be further scrutinised by the community. These results confirm the importance of combining automatic machine learning algorithms with domain knowledge in the construction of recommendation systems for astronomy. Our code is publicly available*.


Sign in / Sign up

Export Citation Format

Share Document