scholarly journals An Evaluation of Big Data Analytics Projects and the Project Predictive Analytics Approach

2020 ◽  
Vol 12 (4) ◽  
pp. 132-146
Author(s):  
Gabriel Kabanda

Big Data is the process of managing large volumes of data obtained from several heterogeneous data types e.g. internal, external, structured and unstructured that can be used for collecting and analyzing enterprise data. The purpose of the paper is to conduct an evaluation of Big Data Analytics Projects which discusses why the projects fail and explain why and how the Project Predictive Analytics (PPA) approach may make a difference with respect to the future methods based on data mining, machine learning, and artificial intelligence. A qualitative research methodology was used. The research design was discourse analysis supported by document analysis. Laclau and Mouffe’s discourse theory was the most thoroughly poststructuralist approach.

2020 ◽  
Vol 4 (2) ◽  
pp. 5 ◽  
Author(s):  
Ioannis C. Drivas ◽  
Damianos P. Sakas ◽  
Georgios A. Giannakopoulos ◽  
Daphne Kyriaki-Manessi

In the Big Data era, search engine optimization deals with the encapsulation of datasets that are related to website performance in terms of architecture, content curation, and user behavior, with the purpose to convert them into actionable insights and improve visibility and findability on the Web. In this respect, big data analytics expands the opportunities for developing new methodological frameworks that are composed of valid, reliable, and consistent analytics that are practically useful to develop well-informed strategies for organic traffic optimization. In this paper, a novel methodology is implemented in order to increase organic search engine visits based on the impact of multiple SEO factors. In order to achieve this purpose, the authors examined 171 cultural heritage websites and their retrieved data analytics about their performance and user experience inside them. Massive amounts of Web-based collections are included and presented by cultural heritage organizations through their websites. Subsequently, users interact with these collections, producing behavioral analytics in a variety of different data types that come from multiple devices, with high velocity, in large volumes. Nevertheless, prior research efforts indicate that these massive cultural collections are difficult to browse while expressing low visibility and findability in the semantic Web era. Against this backdrop, this paper proposes the computational development of a search engine optimization (SEO) strategy that utilizes the generated big cultural data analytics and improves the visibility of cultural heritage websites. One step further, the statistical results of the study are integrated into a predictive model that is composed of two stages. First, a fuzzy cognitive mapping process is generated as an aggregated macro-level descriptive model. Secondly, a micro-level data-driven agent-based model follows up. The purpose of the model is to predict the most effective combinations of factors that achieve enhanced visibility and organic traffic on cultural heritage organizations’ websites. To this end, the study contributes to the knowledge expansion of researchers and practitioners in the big cultural analytics sector with the purpose to implement potential strategies for greater visibility and findability of cultural collections on the Web.


Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


Author(s):  
Dennis T. Kennedy ◽  
Dennis M. Crossen ◽  
Kathryn A. Szabat

Big Data Analytics has changed the way organizations make decisions, manage business processes, and create new products and services. Business analytics is the use of data, information technology, statistical analysis, and quantitative methods and models to support organizational decision making and problem solving. The main categories of business analytics are descriptive analytics, predictive analytics, and prescriptive analytics. Big Data is data that exceeds the processing capacity of conventional database systems and is typically defined by three dimensions known as the Three V's: Volume, Variety, and Velocity. Big Data brings big challenges. Big Data not only has influenced the analytics that are utilized but also has affected technologies and the people who use them. At the same time Big Data brings challenges, it presents opportunities. Those who embrace Big Data and effective Big Data Analytics as a business imperative can gain competitive advantage.


2017 ◽  
pp. 83-99
Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


Author(s):  
Chien-Lung Chan ◽  
Chi-Chang Chang

Unlike most daily decisions, medical decision making often has substantial consequences and trade-offs. Recently, big data analytics techniques such as statistical analysis, data mining, machine learning and deep learning can be applied to construct innovative decision models. With complex decision making, it can be difficult to comprehend and compare the benefits and risks of all available options to make a decision. For these reasons, this Special Issue focuses on the use of big data analytics and forms of public health decision making based on the decision model, spanning from theory to practice. A total of 64 submissions were carefully blind peer reviewed by at least two referees and, finally, 23 papers were selected for this Special Issue.


Author(s):  
Guowei Cai ◽  
Sankaran Mahadevan

This manuscript explores the application of big data analytics in online structural health monitoring. As smart sensor technology is making progress and low cost online monitoring is increasingly possible, large quantities of highly heterogeneous data can be acquired during the monitoring, thus exceeding the capacity of traditional data analytics techniques. This paper investigates big data techniques to handle the highvolume data obtained in structural health monitoring. In particular, we investigate the analysis of infrared thermal images for structural damage diagnosis. We explore the MapReduce technique to parallelize the data analytics and efficiently handle the high volume, high velocity and high variety of information. In our study, MapReduce is implemented with the Spark platform, and image processing functions such as uniform filter and Sobel filter are wrapped in the mappers. The methodology is illustrated with concrete slabs, using actual experimental data with induced damage


Author(s):  
Sarah Brayne

The scope of criminal justice surveillance, from policing to incarceration, has expanded rapidly in recent decades. At the same time, the use of big data has spread across a range of fields, including finance, politics, health, and marketing. While law enforcement’s use of big data is hotly contested, very little is known about how the police actually use it in daily operations and with what consequences. This book offers an inside look at how police use big data and new surveillance technologies, leveraging on-the-ground fieldwork with one of the most technologically advanced law enforcement agencies in the world—the Los Angeles Police Department. Drawing on original interviews and ethnographic observations from over two years of fieldwork with the LAPD, the text examines the causes and consequences of big data and algorithmic control. It reveals how the police use predictive analytics and new surveillance technologies to deploy resources, identify criminal suspects, and conduct investigations; how the adoption of big data analytics transforms police organizational practices; and how the police themselves respond to these new data-driven practices. While big data analytics has the potential to reduce bias, increase efficiency, and improve prediction accuracy, the book argues that it also reproduces and deepens existing patterns of inequality, threatens privacy, and challenges civil liberties.


2020 ◽  
Vol 17 (8) ◽  
pp. 3798-3803
Author(s):  
M. D. Anto Praveena ◽  
B. Bharathi

Big Data analytics has become an upward field, and it plays a pivotal role in Healthcare and research practices. Big data analytics in healthcare cover vast numbers of dynamic heterogeneous data integration and analysis. Medical records of patients include several data including medical conditions, medications and test findings. One of the major challenges of analytics and prediction in healthcare is data preprocessing. In data preprocessing the outlier identification and correction is the important challenge. Outliers are exciting values that deviates from other values of the attribute; they may simply experimental errors or novelty. Outlier identification is the method of identifying data objects with somewhat different behaviors than expectations. Detecting outliers in time series data is different from normal data. Time series data are the data that are in a series of certain time periods. This kind of data are identified and cleared to bring the quality dataset. In this proposed work a hybrid outlier detection algorithm extended LSTM-GAN is helped to recognize the outliers in time series data. The outcome of the proposed extended algorithm attained better enactment in the time series analysis on ECG dataset processing compared with traditional methodologies.


Author(s):  
Jaimin Navinchandra Undavia ◽  
Atul Manubhai Patel

The technological advancement has also opened up various ways to collect data through automatic mechanisms. One such mechanism collects a huge amount of data without any further maintenance or human interventions. The health industry sector has been confronted by the need to manage the big data being produced by various sources, which are well known for producing high volumes of heterogeneous data. High level of sophistication has been incorporated in almost all the industry, and healthcare is one of them. The article shows that the existence of huge amount of data in healthcare industry and the data generated in healthcare industry is neither homogeneous nor a simple type of data. Then the various sources and objectives of data are also highlighted and discussed. As data come from various sources, they must be versatile in nature in all aspects. So, rightly and meaningfully, big data analytics has penetrated the healthcare industry and its impact is also highlighted.


Sign in / Sign up

Export Citation Format

Share Document