scholarly journals Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits

2021 ◽  
Vol 10 (1) ◽  
pp. 10-21
Author(s):  
Zhixian Zong ◽  
Xiaoting Zhang ◽  
Zhengmeng Yang ◽  
Weihao Yuan ◽  
Jianping Huang ◽  
...  

Aims Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Methods Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. Results Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. Conclusion This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10–21.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Seongjae Choi ◽  
Jun-Hyung Kim ◽  
Jeongho Ha ◽  
Bo-Ing Jeong ◽  
Yun Chan Jung ◽  
...  

We investigated the effects of intra-articular injections of alginate-microencapsulated adipose tissue-derived mesenchymal stem cells (ASCs) during osteoarthritis (OA) development in a rabbit model of anterior cruciate ligament transection (ACLT). We induced OA in mature New Zealand white rabbits by bilateral ACLT. Stifle joints were categorised into four groups according to intra-articular injection materials. Alginate microbeads and microencapsulated ASCs were prepared using the vibrational nozzle technology. Two weeks after ACLT, the rabbits received three consecutive weekly intra-articular injections of 0.9% NaCl, alginate microbeads, ASCs, or microencapsulated ASCs, into each joint. Nine weeks after ACLT, we euthanised the rabbits and collected bilateral femoral condyles for macroscopic, histological, and immunohistochemical analyses. Macroscopic evaluation using the modified OA Research Society International (OARSI) score and total cartilage damage score showed that cartilage degradation on the femoral condyle was relatively low in the microencapsulated-ASC group. Histological analysis of the lateral femoral condyles indicated that microencapsulated ASCs had significant chondroprotective effects. Immunohistochemically, the expression of MMP-13 after the articular cartilage damage was relatively low in the microencapsulated-ASC-treated stifle joints. During the development of experimental OA, as compared to ASCs alone, intra-articular injection of microencapsulated ASCs significantly decreased the progression and extent of OA.


2008 ◽  
Vol 294 (3) ◽  
pp. C675-C682 ◽  
Author(s):  
Paul R. Crisostomo ◽  
Yue Wang ◽  
Troy A. Markel ◽  
Meijing Wang ◽  
Tim Lahm ◽  
...  

Understanding the mechanisms by which adult stem cells produce growth factors may represent an important way to optimize their beneficial paracrine and autocrine effects. Components of the wound milieu may stimulate growth factor production to promote stem cell-mediated repair. We hypothesized that tumor necrosis factor-α (TNF-α), endotoxin (LPS), or hypoxia may activate human mesenchymal stem cells (MSCs) to increase release of vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF-1), or hepatocyte growth factor (HGF) and that nuclear factor-κB (NFκB), c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) mediates growth factor production from human MSCs. To study this, human MSCs were harvested, passaged, divided into four groups (100,000 cells, triplicates) and treated as follows: 1) with vehicle; 2) with stimulant alone [24 h LPS (200 ng/ml), 24 h TNF-α (50 ng/ml), or 24 h hypoxia (1% O2)]; 3) with inhibitor alone [NFκB (PDTC, 1 mM), JNK (TI-JIP, 10 μM), or ERK (ERK Inhibitor II, 25 μM)]; and 4) with stimulant and the various inhibitors. After 24 h incubation, MSC activation was determined by measuring supernatants for VEGF, FGF2, IGF-1, or HGF (ELISA). TNF-α, LPS, and hypoxia significantly increased human MSC VEGF, FGF2, HGF, and IGF-1 production versus controls. Stem cells exposed to injury demonstrated increased activation of NFκB, ERK, and JNK. VEGF, FGF2, and HGF expression was significantly reduced by NFκB inhibition (50% decrease) but not ERK or JNK inhibition. Moreover, ERK, JNK, and NFκB inhibitor alone did not activate MSC VEGF expression over controls. Various stressors activate human MSCs to increase VEGF, FGF2, HGF, and IGF-1 expression, which depends on an NFkB mechanism.


Cartilage ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 102-111
Author(s):  
Julio Granados-Montiel ◽  
Monica Cruz-Lemini ◽  
Claudia Rangel-Escareño ◽  
Gabriela Martinez-Nava ◽  
Carlos Landa-Solis ◽  
...  

Objective Human mesenchymal stem cells (hMSCs) are a promising source for regenerative medicine, especially mesodermal lineages. Clinical applications require an understanding of the mechanisms for transcriptional control to maintain the desired cell type. The aim of this study was to identify novel markers for differentiation of hMSCs into bone or cartilage with the use of Kartogenin, by RNA analysis using microarray technology, and explore the role of RhoA-Rho associated protein kinase (ROCK) inhibition in these. Methods Commercial human bone marrow derived primary mesenchymal stem cells were purchased from ATCC. Cells were differentiated in vitro in 2-dimensional cultures using Kartogenin as the main cartilage inducer and bone morphogenetic protein 2 for bone differentiation; cells were cultured with and without ROCK inhibitor Y-27632. After 21 days of culture, whole RNA was extracted and analyzed via Affimetrix microarrays. The most significant hits were validated by quantitative polymerase chain reaction. Results We found a total of 1,757 genes that were either up- or downregulated on differentiation, when compared to P1 hMSC (control) at day 0 of differentiation. Two members of the Serpin superfamily, SERPINA9 and SERPINB2, were significantly upregulated in the cartilage groups, whereas they were unchanged in the bone groups with and without ROCK inhibition. Conclusions SERPINA9 and SERPINB2 are novel differentiation markers, and molecular regulator candidates for hMSC lineage commitment toward bone and cartilage, providing a new tool for regenerative medicine. Our study highlights the roles of these 2 genes, with significant upregulation of both in cell cultures stimulated with Kartogenin.


2013 ◽  
Vol 125 (4) ◽  
pp. 199-210 ◽  
Author(s):  
Sandra Villanueva ◽  
Juan E. Carreño ◽  
Lorena Salazar ◽  
César Vergara ◽  
Rocío Strodthoff ◽  
...  

Therapeutic approaches for CKD (chronic kidney disease) have been able to reduce proteinuria, but not diminish the disease progression. We have demonstrated beneficial effects by injection of BM (bone marrow)-derived MSCs (mesenchymal stem cells) from healthy donors in a rat model with CKD. However, it has recently been reported that BM-MSCs derived from uraemic patients failed to confer functional protection in a similar model. This suggests that autologous BM-MSCs are not suitable for the treatment of CKD. In the present study, we have explored the potential of MSCs derived from adipose tissue (AD-MSCs) as an alternative source of MSCs for the treatment of CKD. We have isolated AD-MSCs and evaluated their effect on the progression of CKD. Adult male SD (Sprague–Dawley) rats subjected to 5/6 NPX (nephrectomy) received a single intravenous infusion of 0.5×106 AD-MSCs or MSC culture medium alone. The therapeutic effect was evaluated by plasma creatinine measurement, structural analysis and angiogenic/epitheliogenic protein expression. AD-MSCs were detected in kidney tissues from NPX animals. This group had a significant reduction in plasma creatinine levels and a lower expression of damage markers ED-1 and α-SMA (α-smooth muscle actin) (P<0.05). In addition, treated rats exhibited a higher level of epitheliogenic [Pax-2 and BMP-7 (bone morphogenetic protein 7)] and angiogenic [VEGF (vascular endothelial growth factor)] proteins. The expression of these biomarkers of regeneration was significantly related to the improvement in renal function. Although many aspects of the cell therapy for CKD remain to be investigated, we provide evidence that AD-MSCs, a less invasive and highly available source of MSCs, exert an important therapeutic effect in this pathology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ao Duan ◽  
Kai Shen ◽  
Beichen Li ◽  
Cong Li ◽  
Hao Zhou ◽  
...  

Abstract Background Previous studies report that lipopolysaccharide (LPS)-preconditioned mesenchymal stem cells have enhanced trophic support and improved regenerative and repair properties. Extracellular vesicles secreted by synovial mesenchymal stem cells (EVs) can reduce cartilage damage caused by osteoarthritis (OA). Previous studies show that extracellular vesicles secreted by LPS-preconditioned synovial mesenchymal stem cells (LPS-pre EVs) can improve the response to treatment of osteoarthritis (OA). This study sought to explore effects of LPS-pre EVs on chondrocyte proliferation, migration, and chondrocyte apoptosis, as well as the protective effect of LPS-pre EVs on mouse articular cartilage. Methods Chondrocytes were extracted to explore the effect of LPS-pre EVs on proliferation, migration, and apoptosis of chondrocytes. In addition, the effect of LPS-pre EVs on expression level of important proteins of chondrocytes was explored suing in vitro experiments. Further, intraarticular injection of LPS-pre EVs was performed on the destabilization of the medial meniscus (DMM)-induced mouse models of OA to explore the therapeutic effect of LPS-pre EVs on osteoarthritis in vivo. Results Analysis showed that LPS-pre EVs significantly promoted proliferation and migration of chondrocytes and inhibited the apoptosis of chondrocytes compared with PBS and EVs. Moreover, LPS-pre EVs inhibited decrease of aggrecan and COL2A1 and increase of ADAMTS5 caused by IL-1β through let-7b. Furthermore, LPS-pre EVs significantly prevented development of OA in DMM-induced mouse models of OA. Conclusions LPS pretreatment is an effective and promising method to improve therapeutic effect of extracellular vesicles secreted from SMSCs on OA.


2021 ◽  
Author(s):  
Fang-Ying Du ◽  
Na Zhao ◽  
Lei Bao ◽  
Jing Lei ◽  
An-Qi Liu ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been used to treat immunopathy, and three-dimensional (3D) cultured MSCs show enhanced immunomodulatory property compared with those in two-dimensional (2D) culture. However, both the regulatory mechanisms remain unclear. The aim of the study was to investigate the role of mechanical stress in maintaining the immunomodulatory function of 2D and 3D cultured MSCs.Methods: Umbilical cord mesenchymal stem cells (UC-MSCs) were plated on tissue culture plastic (TCP) as 2D culture and 3D cultured UC-MSCs were seeded in matrigel. Surface markers, clonogenicity, proliferation and immunoregulatory property of UC-MSCs were evaluated. Meanwhile, we established the mouse models of colitis and type 1 diabetes mellitus (T1DM) to reveal the pharmacotherapeutic effects of 3D cultured MSCs in vivo. The effect of changing mechanical stress by modulating Yes-associated protein (YAP) on immunomodulatory function of 2D and 3D cultured UC-MSCs was evaluated by immunofluorescent analysis, real-time quantitative polymerase chain reaction (qPCR) and western blot.Results: We verified early passage UC-MSCs in 2D and 3D cultures exhibited stemness, immunomodulatory property and therapeutic efficacy against immunopathy. However, these characteristics of 2D cultured UC-MSCs were impaired after extensive expansion, whereas 3D culture extended them for several passages by activating YAP. Moreover, prostaglandin E2 (PGE2) could up-regulate YAP to improve the immunomodulatory ability of 2D cultured UC-MSCs after extensive expansion. Conclusions: This work found for the first time that the significance of mechanical stress in maintaining immunoregulatory function of 2D and 3D cultured UC-MSCs, providing a new idea for improving the efficacy of MSCs-based immunotherapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Francesca Posa ◽  
Adriana Di Benedetto ◽  
Graziana Colaianni ◽  
Elisabetta A. Cavalcanti-Adam ◽  
Giacomina Brunetti ◽  
...  

1α,25-Dihydroxyvitamin D3(1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules.


Sign in / Sign up

Export Citation Format

Share Document