ALTERNATIVE N FERTILIZER MANAGEMENT STRATEGIES EFFECTS ON SUBSURFACE DRAIN EFFLUENT AND N UPTAKE

1998 ◽  
Vol 14 (5) ◽  
pp. 469-473 ◽  
Author(s):  
D. L. Bjorneberg ◽  
D. L. Karlen ◽  
R. S. Kanwar ◽  
C. A. Cambardella
2020 ◽  
Vol 34 (6) ◽  
pp. 807-813
Author(s):  
Benjamin H. Lawrence ◽  
Jason A. Bond ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
Daniel B. Reynolds ◽  
...  

AbstractOff-target paraquat movement to rice has become a major problem in recent years for rice producers in the midsouthern United States. Nitrogen (N) fertilizer is applied to rice in greater quantity and frequency than all other nutrients to optimize rice yield. Two separate field studies were conducted from 2015 to 2018 in Stoneville, MS, to assess whether starter N fertilizer can aid rice recovery from exposure to a sub-lethal concentration of paraquat and to evaluate rice response to different N fertilizer management strategies following exposure to a sub-lethal concentration of paraquat. In both studies, paraquat treatments consisted of paraquat at 0 and 84 g ai ha–1 applied to rice in the two- to three-leaf (EPOST) growth stage. In the starter fertilizer study, N fertilizer at 24 kg ha–1 as ammonium sulfate (AMS) was applied to rice at spiking- to one-leaf (VEPOST), two- to three-leaf (EPOST), or three- to four-leaf (MPOST) growth stages before and after paraquat treatment. In the N fertilizer timing study, N fertilizer at 168 kg N ha–1 was applied in a single four-leaf to one-tiller (LPOST) application or two-, three-, and two four-way split applications. Despite starter N fertilizer applications, paraquat injured rice ≥41%, reduced height 57%, reduced dry weight prior to flooding 77%, delayed maturity 10 d, reduced dry weight at maturity 33%, and reduced rough rice yield 35% in the starter fertilizer study. Similarly, in the N fertilizer timing study, paraquat injured rice ≥45%, reduced height 14%, delayed maturity 10 d, reduced dry weight at maturity 44%, and reduced rough rice yield 50% for all N fertilizer management strategies. Both studies indicate that severe complications in growth and development can occur from rice exposure to a sub-lethal concentration of paraquat. In both studies, manipulation of N fertilizer management did not facilitate rice recovery from early-season exposure to paraquat.


2016 ◽  
Vol 155 (4) ◽  
pp. 599-612 ◽  
Author(s):  
C. ZOU ◽  
R. C. PEARCE ◽  
J. H. GROVE ◽  
M. S. COYNE

SUMMARYFew studies have investigated nitrogen (N) fertilizer management in no-tillage (NT) tobacco (Nicotiana tobacumL.) production systems, even though N fertilization is known to influence tobacco cured leaf yield and quality. The present study evaluated how tillage practice and N fertilizer rate affected burley tobacco agronomic performance, plant available nitrogen (PAN) supply, and leaf chemical constituents. In 2012 and 2013, three N fertilizer rates (0, 140 and 280 kg N/ha) were introduced as split-plots within a long-term NT and conventional tillage (CT) (mouldboard plough) comparison study. Results (2007–2013) showed that the effect of tillage on tobacco yield depended on seasonal weather; NT tobacco appeared to have lower yield than CT tobacco in seasons with <450 mm growing season rainfall, but similar yields when rainfall was >500 mm. In 2012 (432 mm rainfall; 84% of the long-term seasonal mean), leaf SPAD reading, leaf nitrate concentration, total nitrogen concentration at the topping day (i.e. removal of flowers/buds at the tops of the plants) and cured leaf nicotine and alkaloid content suggested that N deficiency was more pronounced in NT than CT at the lowest N fertilizer rate. The PAN supply, as measured by a modifiedin situresin core method, was similar in 2012 between NT and CT, suggesting that plant factors may have had a role in N uptake efficiency. This scenario did not repeat in 2013 (706 mm rainfall; 137% of the long-term seasonal mean). Even though N fertilization rates were identical for both tillage practices in 2012 and 2013, PAN was lower, on average, in 2012. Because N uptake is largely the result of mass flow, the impact of reduced root density in NT tobacco would be expected to be more pronounced in a season such as 2012, when water was limited. Banding N close to the tobacco root system and/or side-dressing some portion of N may be recommended strategies to improve N use efficiency in NT burley tobacco production.


2020 ◽  
pp. 1-8
Author(s):  
Tran Kim Ngan Luong ◽  
Frank Forcella ◽  
Sharon A. Clay ◽  
Michael S. Douglass ◽  
Sam E. Wortman

Abrasive weeding is a nonchemical weed control tactic that uses small, gritty materials propelled with compressed air to destroy weed seedlings. Organic fertilizers have been used successfully as abrasive grits to control weeds, but the goal for this study was to explore the effects of fertilizer grit, application rates, and background soil fertility on weeds, plant available nitrogen (N) uptake, and crop yield. Field trials were conducted in organic ‘Carmen’ sweet red pepper (Capsicum annuum) and organic ‘Gypsy’ broccoli (Brassica oleracea var. italica) and treatments included organic fertilizer grit (8N–0.9P–3.3K vs. 3N–3.1P–3.3K), grit application rates (low vs. high), compost amendments (with and without), and weedy and weed-free controls. Weed biomass was harvested at 84 days and 65 days after transplanting for pepper and broccoli, respectively. Simulated total plant available N (nitrate + ammonium) uptake was measured with ion exchange resin stakes between 7 and 49 days after the first of two grit applications. Produce was harvested at maturity, graded for marketability, and weighed. The higher grit application rate, regardless of fertilizer type, reduced the weed biomass by 75% to 89% for pepper and by 86% to 99% for broccoli. By 5 weeks after the first grit application, simulated plant N uptake was greatest following grit application with the 8% N fertilizer, followed by the 3% N fertilizer, and lowest in the weedy control. The high grit application rate of 8% N fertilizer increased pepper yield by 112% compared with the weedy control, but it was similar to that of the weed-free control. Broccoli was less responsive to abrasive grits, with yield changes ranging from no difference to up to a 36% increase (relative to the weedy control) depending on the application rate and compost amendment. This is the first evidence indicating that the nutrient composition of organic fertilizer abrasive grits can influence in-season soil N dynamics, weed competition, and crop yield. The results suggest that abrasive weeding technology could be leveraged to improve the precision of in-season fertilizer management of organic crops.


2020 ◽  
Vol 12 (7) ◽  
pp. 2607
Author(s):  
Wenting Jiang ◽  
Yingying Xing ◽  
Xiukang Wang ◽  
Xiaohu Liu ◽  
Zhigang Cui

Excessive application of chemical fertilizers has caused a series of environmental problems, including environmental pollution. Quantitative estimation of a sustainable fertilizer recommendation rate is paramount for formulating fertilizer management strategies to improve productivity of low-yield regions and to prevent environmental damage. In this study, the database was drawn from 31 experimental sites in the main maize production region of Northeast China, during the period 2009 to 2013, to study the relationships between yield factors and nitrogen application rates, and to explore sustainable nitrogen (N) fertilizer recommendation rates based on analysis using the fertilizer response model. The fertilizer response model method is a technique that can provide effective performance predictions for the estimation of the optimum crop balanced fertilizer rates in varied agricultural regions. Results revealed that the average grain yield in treatment of N180 (the amount of nitrogen application rate was 90 kg ha −1) was highest, and the yield increase rate ranged from 4.77% to 58.53%, with an average of 25.89%. The sequence of grain yields in each treatment receiving N fertilizer management from high to low was: N180 > N270 > N90 in all the regions. The agronomic efficiency for applied N in N90, N180, N270 treatments was 11.8, 10.8, and 4.6 kg kg −1, respectively. The average optimum N fertilizer recommendation rate in Liaoning province was 180.4 kg ha −1, and the predicted optimum yield ranged between 7908.7 and 12,153.9 kg ha −1, with an average of 9699.1 kg ha −1. The mean optimum N fertilizer recommendation rate in western (WL), central and southern (SCL), eastern (EL), and northern (NL) of Liaoning province were 184.2, 177.2, 163.5, and 192.5 kg ha −1, and the average predicted optimum yields were 8785.3, 10,630.3, 9347, and 9942.4 kg ha −1. This study analyzed the spatial distribution of optimum fertilizer recommendation rates and the corresponding theoretical yield based on a large database, which helped to develop effective and environment-friendly N management strategies for sustainable production systems.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1060
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Tengfei Lyu ◽  
Yujie Zhang ◽  
Dan Lin ◽  
...  

This investigation aims to provide theoretical and practical evidence for the efficient utilization of nitrogen (N) in paddy-upland rapeseed-rice rotation systems because a lack of previous research on such rotation systems leads to inefficient management practices. The effects of the N application rates and the N fertilizer management strategies for rapeseed and rice were examined, respectively, in relation to the photosynthetic productivity and yields of hybrid rice. The results indicated that the leaf area, Pn, with 40% as basal fertilizer, 40% as tillering fertilize, and 20% as panicle fertilizer and a reduced N rate (30 kg/ha) during the rape season, were higher than other nitrogen management strategies trialed, with conventional N rates in the rape season. The average rice grain yield (9545.15 kg/ha) over the two years with 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer was higher than other N treatments with the reduced N rates during the rape season. The reduced N rate during the rapeseed season and 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer management during the rice season for the rape-rice rotation system exhibited the highest rice yields. Our findings indicated that the N fertilizer management model was a high-yielding, N-saving, and environmentally friendly measure for rape–rice rotation systems in southern China.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 750-753
Author(s):  
Wei-Ling Yuan ◽  
Shang-yong Yuan ◽  
Xiao-hui Deng ◽  
Cai-xia Gan ◽  
Lei Cui ◽  
...  

Efficient nitrogen (N) fertilizer management is crucial for ensuring the maximum economic yield and reducing the risk of environmental pollution. The objective of this study was to determine the effect of N fertilizer management on root yield and N uptake of radish in southern China by using 15N isotope tracing. A 2-year field experiment was conducted with three N rates (0, 60, and 120 kg N/ha) and two different application proportions, viz, A [50% at basal, 20% at 15 days after seeding (DAS), 30% at 30 DAS] and B (30% at basal, 20% at 15 DAS, 50% at 30 DAS) for each N rate, which were expressed as N0, N60A, N60B, N120A, and N120B, respectively. The results showed that root yields were significantly increased with N rates increasing from 0 to 120 kg N/ha. The root yields for N120A and N120B were 67.60 t·ha−1 and 72.50 t·ha−1 at harvest, 64.07% and 66.67% higher than those for the treatments of N60A and N60B, respectively. Mean radish recovery of N fertilizer ranged from 25.90% at N120A to 32.60% at N60B, and N fertilizer residual rate in the soil ranged from 11.50% at N120A to 14.90% at N60B. About 17.50% to 35.70% of total uptake of 15N derived from basal fertilizer was absorbed at seeding stage. However, 61.87% to 80.18% of total uptake of 15N derived from topdressing fertilizer absorbed at root expanding stage. Therefore, appropriate nitrogen application with increasing topdressing nitrogen amount could increase root yield of radish and the nitrogen recovery efficiency. Nitrogen fertilizer application recommended was 120 kg N/ha with 30% for basal, 20% for 15 DAS and 50% for 30 DAS in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jose Franco Da Cunha Leme Filho ◽  
Brenda V. Ortiz ◽  
Kipling S. Balkcom ◽  
Damianos Damianidis ◽  
Thorsten J. Knappenberger ◽  
...  

Regulations on nutrient application amounts and environmental impacts of fertilizers are promoting advances in agricultural management strategies to optimize irrigation application and N fertilization in corn. Previous studies have found a relationship between irrigation application, available water in the soil, and N fertilizer uptake. The objective of this study was to evaluate interactions between two irrigation scheduling methods and four N rate applications (0-control, 202, 269, and 336 kg ha−1) on grain yield, aboveground biomass, plant N concentration, N uptake, and nitrogen use efficiency in corn. The study was conducted at the Tennessee Valley Research and Extension Center (TVREC) during two growing seasons (2014 and 2015). The irrigation scheduling methods consisted of (i) the pan evaporation method, which is based on managing the crop’s estimated evapotranspiration (ET) using pan evaporation values and the crop’s consumptive water use and (ii) the sensor-based irrigation scheduling method based on soil matric potential values recorded by soil moisture tension sensors installed in the field. Irrigation amounts from both irrigation scheduling methods indicated that less water was applied with the sensor-based method. The different amounts of irrigation applied associated with the two irrigation scheduling methods did not impact grain yield, aboveground biomass, and NUE. In general, NUEs values decreased with increased N rates, which means that additional N fertilizer added to the soil was not converted into grain yield or/and adsorbed by plants; therefore, more N remained in the soil, increasing the risk for environmental problems.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


Sign in / Sign up

Export Citation Format

Share Document