Measuring the Kinetics of Acetaldehyde, Ethanol, and Ethyl Acetate within Peanut Kernels During High Temperature Drying

1996 ◽  
Vol 39 (3) ◽  
pp. 1039-1045 ◽  
Author(s):  
G. S. Osborn ◽  
J. H. Young ◽  
J. A. Singleton
Fuel ◽  
2019 ◽  
Vol 253 ◽  
pp. 180-188 ◽  
Author(s):  
Xi Zeng ◽  
Fang Wang ◽  
Mohammed Haruna Adamu ◽  
Lijuan Zhang ◽  
Zhennan Han ◽  
...  

2018 ◽  
Vol 40 (2) ◽  
pp. 49-55
Author(s):  
D.M. Korinchuk

The paper is devoted to determining the effective thermal conductivity coefficient of a mathematical model of high temperature drying biomass. The method of experimental research kinetics of drying and theoretical processing of the results is developed. The results of the research are presented. The average value of the effective coefficient of thermal conductivity is calculated and the possibility of its application in calculations of high temperature drying of biomass is substantiated. The modeling of high-temperature drying of biomass and peat will allow developing and substantiat-ing the methods of intensification of the drying process, developing engineering methods for calculating the equipment and ensuring the creation of the most rational designs of drying plants. Increasing the accuracy of mathematical modeling requires conducting experimental studies and de-termining the value of the effective coefficient of thermal conductivity of materials in the dry zone, as well as the influence of the temperature regime and properties of biomass on its value. The aim of the work is to determine the effective coefficient of heat conductivity of biomass in con-ditions of high temperature drying in biofuel production technologies. The methodology of determination of the effective coefficient of thermal conductivity for use in cal-culations of drying process under the model of high temperature drying of biomass is developed. The article presents the results of an experimental study of the kinetics of high- temperature drying of biomass samples of pine, willow and poplar of flat form. The theoretical model of flat particle drying was developed and cal-culations of the process of high-temperature drying of flat bodies were conducted. According to the results of the research, the value of the effective coefficient of thermal conductivity for a series of experiments is de-termined by the method of minimizing the relative error of theoretical and experimental results. The average value of the effective coefficient of thermal conductivity is calculated and the its applicability in the calcula-tions of high temperature drying of biomass using the mathematical model is substantiated. Based on these studies, the validity of the provisions of the developed mathematical model is concluded. The results can be used to upgrade and optimize processes in aerodynamic dryers.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


1981 ◽  
Vol 46 (7) ◽  
pp. 1577-1587 ◽  
Author(s):  
Karel Jeřábek

Catalytic activity of ion exchangers prepared by partial sulphonation of styrene-divinylbenzene copolymers in reesterifications of ethyl acetate by methanol and propanol, hydrolysis of ethyl acetate and in synthesis of bisphenol A has been compared with data on polymer structure of these catalysts and with distribution of the crosslinking agent, divinylbenzene, calculated from literature data on kinetics of copolymerisation of styrene with divinylbenzene. It was found that the polymer structure of ion exchangers influences catalytic activity predominantly by changing the local concentration of acid active sites. The results obtained indicated that the effect of transport phenomena on the rate of catalytic reactions does not depend on the degree of swelling of the ion exchangers in reaction medium but it is mainly dependent on the relative affinity of reaction components to the acid groups or to the polymer skeleton.


Author(s):  
V. Optasanu ◽  
M. C. Marco de Lucas ◽  
A. Kanjer ◽  
B. Vincent ◽  
T. Montesin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document