Effect of Manure Application Rate and Soil Moisture Content on the Movement of an Antibiotic Resistant Strain of E. coli in Subsurface Drainage Under Simulated Rainfall

2001 ◽  
Author(s):  
K. D. Stamm ◽  
J. L. Baker ◽  
L. J. Halverson ◽  
J. C. Lorimor
2020 ◽  
Vol 13 ◽  
pp. 117862212094806 ◽  
Author(s):  
MJ Marques ◽  
M Ruiz-Colmenero ◽  
R Bienes ◽  
A García-Díaz ◽  
B Sastre

The study of alternative soil managements to tillage, based on the evidence of climate change in the Mediterranean basin, is of great importance. Summer and autumn are critical seasons for soil degradation due to the high-intensity, short-duration storms. Vineyards are vulnerable, especially on steep slopes. The particular effects of storms over the years under different soil conditions due to different management practices are not frequently addressed in the literature. The aim of this study was to examine the differences between runoff and soil moisture patterns influenced by 2 treatments: traditional tillage (Till) and a permanent cover crop. A shallow-rooted grass species Brachypodium distachyon (L.) P. Beauv. with considerable density coverage was selected as cover crop. This annual species was seeded once in the first year and then allowed to self-seed the following years. Tillage was performed at least twice in spring to a 10- to 15-cm depth and once in late autumn at a depth of 20 to 35 cm. Rainfall simulation experiments were performed, 1 year after treatments, using high-intensity rainfall on closed plots of 2 m2, located in the middle strips of the vineyard with different treatments. The effects of simulated rainfall experiments were determined in 3 different moments of the growth cycle of cultivar: (1) in summer with dry soils, (2) in early autumn with moderate soil moisture, and (3) in autumn with wet soils. During the 2-year trial, the soil moisture level in the soil upper layer (0-10 cm) was higher for Till treatment (14.1% ± 2.4%) compared with that for cover crop treatment (12.3% ± 2.0%). However, soil moisture values were more similar between treatments at 35 cm depth (12% ± 1%), with the exception of spring and autumn; in spring, water consumption in the cover crop treatment was the highest, and the moisture level at 35 cm depth was reduced (12%) compared with that for Till treatment (13%). In autumn, in cover crop treatment, higher water infiltration rate in soils led to higher soil moisture content at 35 cm (11%) compared with that of Till treatment (10%). The effects of simulated rainfall experiments on runoff and infiltration under different soil conditions and management practices vary seasonally. Runoff was significantly higher in summer for cover crop treatment (11%) as compared with that for Till management (1%), but significantly lower (3%) with wetter soils than for Till treatment (22%) in autumn. Thus, the simulation experiments with wet soils using cover crops produced higher infiltration rates and, consequently, the higher soil moisture content in the following days. The difference between seasons is attributed to the greater porosity of soil under Till treatment in summer, which resulted from the shallow plowing (10-15 cm depth), carried out to reduce moisture competition between weeds. The effect of traditional spring plowing was short-lived. The infiltration of water increased by cover crop treatment as compared with tillage in autumn both before and after ripping. Management practices did not influence wine parameters, as no significant differences were found between wine organoleptic characteristics in the duo-trio wine tastings, similarly, no differences were found for alcoholic degree, acidity, reduced sugars, and pH; however, a trend for a positive increase in polyphenol contents was noticed. Therefore, properly managed to avoid water shortages, cover crops can be recommended for soil protection in semi-arid environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Riziki Mwadalu ◽  
Benson Mochoge ◽  
Benjamin Danga

The effect of biochar on tree growth and soil physical properties as indicated in literature is still outstanding. Information on the effect of biochar on tree growth is limited, and the available literature has recorded conflicting results. Therefore, a field experiment using Casuarina equisetifolia (Casuarina) as the test crop under different biochar rates was conducted. Four biochar rates (0, 2.5, 5.0, and 7.5 t ha−1) were used as treatments, each replicated three times. Generally, biochar-amended plots recorded higher Casuarina height, collar diameter, and diameter at breast height (DBH). The application of biochar at 7.5 t ha−1 resulted in higher Casuarina height of up to 20.2% compared to the control. On the contrary, application of biochar at 2.5 t ha−1 recorded higher collar diameter of up to 30.2% compared to the control. Generally, there was a decrease in soil bulk density with biochar application. Bulk density decreased linearly with increasing biochar application rates with biochar application rate of 7.5 t ha−1 recording the lowest bulk density (0.99 g cm−3). There was a decrease in bulk density of up to 25% compared to the control with the biochar application rate of 7.5 t ha−1. Biochar application rate of 7.5 t ha−1 also recorded the highest soil moisture content across the assessment periods. Biochar-amended plots recorded higher soil moisture content than the untreated control. There was increase in soil moisture content following biochar application of up to 108% with the application of biochar at 7.5 t ha−1 compared to the untreated control. The increase in soil moisture content with biochar application can be attributed to biochar’s porous nature and large surface area. These results suggest that the use of biochar has the potential of enhancing Casuarina growth while enhancing soil physical properties by decreasing bulk density and enhancing soil moisture storage.


2017 ◽  
Vol 30 (2) ◽  
pp. 36-44
Author(s):  
Shaker H. Adday ◽  
Kawther A. Hemeed ◽  
Murtadha A. Al-faris

A field experiment was carried out in silty clay soil at Agricultural Research Station of Garmat Ali in order to study the effect of the plowing depths and manure application on soil moisture content at different soil depths (0-10 (d1), 10-20 (d2), 20-30 (d3), 30-40 (d4), 40-50 (d5) and 50-60 cm (d6)) and two periods (after plowing and after harvesting the sunflower crop). The experiment was conducted using an implement of plowing and manure mixing with soil, which consists of two main parts (two moldboard plows and two subsoilers).The implement was designed and manufactured in the Agriculture machines and Equipment Department in 2015. The treatments used in the study were included two levels of manure application (0 and 45.5 ton ha-1) and two plowing depths of moldboard plow (M) with three plowing depths of subsoiler (S). They were 20 cm of moldboard plow with 20, 30 and 40 cm of subsoiler (M20S20, M20S30 and M20S40), and 30 cm of moldboard plow with 10, 20 and 30 cm of subsoiler (M30S10, M30S20 and M30S30). The results showed that the soil moisture content (MC) was significantly decreased with increasing the plowing depths by the moldboard plows and subsoilers especially after soil plowing. While, the MC significantly increased with increasing the soil depth after the plowing and after harvesting the crop. In contrast, mixing the manure with soil at level 45.5 ton ha-1 by the manufactured implement increased the soil moisture content by 10.73% after the plowing and by 2.33% after the harvesting the sunflower crop compared with untreated soil with manure.


2017 ◽  
Vol 22 (2) ◽  
pp. 107-112
Author(s):  
Yaya Sunarya ◽  
Enok Sumarsih

The objective of the research was to study the interaction between soil moisture content and animal manure application on the growth of Mendong (Fimbristylis globulosa (Retz.) Kunt). The experiment was conducted in May until September 2016 in Kampung Lembur Sawah, Kamulyan Village, Manonjaya Subdistrict, Tasikmalaya Regency. A pot experiment was performed using a factorial design consisting of two factors and three replicates. The factors were soil moisture content (K) consisting of four levels i.e. k1 (100% field capacity (FC)), k2 (150% FC), k3 (200% FC), and k4 (250% FC); and animal manure application (P) consisting of p1 (cattle manure), p2 (broiler chicken manure), and p3 (sheep manure). The indicators of plant growth, i.e. plant height, number of tiller, fresh weight and dry weight of plant biomass, shoot/root ratio, percentage of  the >75cm-long stems, water consumption, and water use efficiency (WUE) were measured.  The results showed that  there was an interaction effect between the soil moisture content and animal manure application on the number of tiller at 45 days after planting (DAP), the percentage of the >75 cm-long stems, and the water consumption. The sheep manure application at any levels of soil moisture content resulted in better effect on the growth of Mendong, water use efficiency, and quality of stem (the percentage of the >75cm-long stems). The soil moisture content above the field capacity resulted in better effect on the growth of Mendong, indicating that Mendong is more suitable to grow on the land with the soil moisture content above the field capacity or saturated soil during the whole growing period. Keywords: Manure, Mendong, soil moisture content


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


2021 ◽  
Vol 13 (8) ◽  
pp. 1562
Author(s):  
Xiangyu Ge ◽  
Jianli Ding ◽  
Xiuliang Jin ◽  
Jingzhe Wang ◽  
Xiangyue Chen ◽  
...  

Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.


Sign in / Sign up

Export Citation Format

Share Document