Investigation of oil extraction from non-food sunflower seeds and meats for future jet fuel production

2013 ◽  
Author(s):  
Xianhui Zhao ◽  
Lin Wei ◽  
James Julson ◽  
Wangda Qu ◽  
Chunkai Shi
AIMS Energy ◽  
2014 ◽  
Vol 2 (2) ◽  
pp. 193-209 ◽  
Author(s):  
Xianhui Zhao ◽  
◽  
Lin Wei ◽  
James Julson

2020 ◽  
Vol 3 (1) ◽  
pp. 155-160
Author(s):  
Ye. M. Semenyshyn ◽  
◽  
V. M. Atamanyuk ◽  
O. Ya. Dobrovetska ◽  
T. I. Rymar ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 295
Author(s):  
Mei Yin Ong ◽  
Saifuddin Nomanbhay ◽  
Fitranto Kusumo ◽  
Raja Mohamad Hafriz Raja Shahruzzaman ◽  
Abd Halim Shamsuddin

In this study, coconut oils have been transesterified with ethanol using microwave technology. The product obtained (biodiesel and FAEE) was then fractional distillated under vacuum to collect bio-kerosene or bio-jet fuel, which is a renewable fuel to operate a gas turbine engine. This process was modeled using RSM and ANN for optimization purposes. The developed models were proved to be reliable and accurate through different statistical tests and the results showed that ANN modeling was better than RSM. Based on the study, the optimum bio-jet fuel production yield of 74.45 wt% could be achieved with an ethanol–oil molar ratio of 9.25:1 under microwave irradiation with a power of 163.69 W for 12.66 min. This predicted value was obtained from the ANN model that has been optimized with ACO. Besides that, the sensitivity analysis indicated that microwave power offers a dominant impact on the results, followed by the reaction time and lastly ethanol–oil molar ratio. The properties of the bio-jet fuel obtained in this work was also measured and compared with American Society for Testing and Materials (ASTM) D1655 standard.


Energy Policy ◽  
1989 ◽  
Vol 17 (3) ◽  
pp. 235-243 ◽  
Author(s):  
G.R. Hadder ◽  
S. Das ◽  
R. Lee ◽  
R.M. Davis

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 93 ◽  
Author(s):  
Jing Wu ◽  
Hong-Juan Liu ◽  
Xiang Yan ◽  
Yu-Jie Zhou ◽  
Zhang-Nan Lin ◽  
...  

It is important to develop full-performance bio-jet fuel based on alternative feedstocks. The compound 1-butanol can be transformed into jet fuel through dehydration, oligomerization, and hydrogenation. In this study, a new catalyst consisting of Zn-Mn-Co modified γ-Al2O3 was used for the dehydration of high-concentration 1-butanol to butenes. The interactive effects of reaction temperature and butanol weight-hourly space velocity (WHSV) on butene yield were investigated with response surface methodology (RSM). Butene yield was enhanced when the temperature increased from 350 °C to 450 °C but it was reduced as WHSV increased from 1 h−1 to 4 h−1. Under the optimized conditions of 1.67 h−1 WHSV and 375 °C reaction temperature, the selectivity of butenes achieved 90%, and the conversion rate of 1-butanol reached 100%, which were 10% and 6% higher, respectively, than when using unmodified γ-Al2O3. The Zn-Mn-Co modified γ-Al2O3 exhibited high stability and a long lifetime of 180 h, while the unmodified γ-Al2O3 began to deactivate after 60 h. Characterization with X-ray diffraction (XRD), nitrogen adsorption-desorption, pyridine temperature-programmed desorption (Py-TPD), pyridine adsorption IR spectra, and inductively coupled plasma atomic emission spectrometry (ICP-AES), showed that the crystallinity and acid content of γ-Al2O3 were obviously enhanced by the modification with Zn-Mn-Co, and the loading amounts of zinc, manganese, and cobalt were 0.54%, 0.44%, and 0.23%, respectively. This study provides a new catalyst, and the results will be helpful for the further optimization of bio-jet fuel production with a high concentration of 1-butanol.


2011 ◽  
Vol 89 (11) ◽  
pp. 2477-2484 ◽  
Author(s):  
Olivier Boutin ◽  
Axel De Nadaï ◽  
Antonio Garcia Perez ◽  
Jean-Henry Ferrasse ◽  
Marina Beltran ◽  
...  

Author(s):  
Е.О. Смычагин ◽  
С.К. Мустафаев

Для утилизации отработанных отбельных глин (ООГ) масложировой промышленности предложено получение комбинированного кормового продукта (ККП) непосредственно на масложировых предприятиях, при переработке ООГ совместно с отходами очистки семян подсолнечника (ООСП). Обоснованы рецептуры и технологии ККП на разработанной нами ранее производственной линии, включающей обогащение ООСП сепарированием, экструдирование и прессование полученного вторичного масличного сырья. На линии был смонтирован дополнительный узел, обеспечивающий равномерное распределение строго определенного количества ООГ во вторичном масличном сырье из ООСП. Исследовано влияние количества внесенных во вторичное масличное сырье ООГ на процесс отжима масла. Обосновано, что для производства ККП во вторичное масличное сырье необходимо добавлять не более 2 ООГ. Полученный ККП по показателям безопасности соответствует белковолипидному кормовому продукту Подсолнечный (ТУ 914637502067862 2014): массовая доля, , в пересчете на абсолютно сухое вещество сырого протеина составила 27,8 сырой клетчатки 30,6 общей золы 7,6. Установлено незначительное увеличение в ККП массовых долей сырого жира и золы, не растворимой в соляной кислоте 15,8 и 1,4 соответственно. Полученное масло по жирнокислотному составу и показателям качества не отличается от масла из ООСП. For the disposal of spent bleaching clays (SBC), we proposed to obtain a combined feed product from them directly at oil and fat enterprises, processing together with the sunflower seed cleaning waste. The formulation and technology for the production of the combined feed product were developed on a previously tested production line, including the enrichment of waste products for cleaning sunflower seeds by separation, extrusion and pressing of the obtained secondary oilseeds, for which a unit was added to ensure uniform distribution of strictly measured amounts of SBC in it. Conducted by studies on the effect of the amount of waste bleaching clay added to secondary oilseeds from waste products from cleaning sunflower seeds on the oil extraction process, it was substantiated that for the production of a combined feed product, no more than 2 of SBC should be added to secondary oilseeds. The resulting combined feed product in terms of safety corresponds to the Proteinlipid feed product Sunflower, produced under 914637502067862 2014 specification, while the combined feed product is slightly higher than the mass fraction of crude fat and ash insoluble in hydrochloric acid. The obtained oil on fatty acid composition and quality indicators practically does not differ from the oil from sunflower seed cleaning waste.


2013 ◽  
Vol 47 (21) ◽  
pp. 12557-12565 ◽  
Author(s):  
Mark D. Staples ◽  
Hakan Olcay ◽  
Robert Malina ◽  
Parthsarathi Trivedi ◽  
Matthew N. Pearlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document