Evaluating the Impact of Drought on Surface and Groundwater Dependent Irrigated Agriculture in Western Oklahoma

2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


2021 ◽  
Author(s):  
Markus Todt ◽  
Pier Luigi Vidale ◽  
Patrick C. McGuire ◽  
Omar V. Müller

<p>Capturing soil moisture-atmosphere feedbacks in a weather or climate model requires realistic simulation of various land surface processes. However, irrigation and other water management methods are still missing in most global climate models today, despite irrigated agriculture being the dominant land use in parts of Asia. In this study, we test the irrigation scheme available in the land model JULES (Joint UK Land Environment Simulator) by running land-only simulations over South and East Asia driven by WFDEI (WATCH Forcing Data ERA-Interim) forcing data. Irrigation in JULES is applied on a daily basis by replenishing soil moisture in the upper soil layers to field capacity, and we use a version of the irrigation scheme that extracts water for irrigation from groundwater and rivers, which physically limits the amount of irrigation that can be applied. We prescribe irrigation for C3 grasses in order to simulate the effects of agriculture, albeit retaining the simpler, widely used 5-PFT (plant functional type) configuration in JULES. Irrigation generally increases soil moisture and evapotranspiration, which results in increasing latent heat fluxes and decreasing sensible heat fluxes. Comparison with combined observational/machine-learning products for turbulent fluxes shows that while irrigation can reduce biases, other biases in JULES, unrelated to irrigation, are larger than improvements due to the inclusion of irrigation. Irrigation also affects water fluxes within the soil, e.g. runoff and drainage into the groundwater level, as well as soil moisture outside of the irrigation season. We find that the irrigation scheme, at least in the uncoupled land-atmosphere setting, can rapidly deplete groundwater to the point that river flow becomes the main source of irrigation (over the North China Plain and the Indus region) and can have the counterintuitive effect of decreasing annual average soil moisture (over the Ganges plain). Subsequently, we will explore the impact of irrigation on regional climate by conducting coupled land-atmosphere simulations.</p>


Author(s):  
Elizabeth Hemming-Schroeder ◽  
Daibin Zhong ◽  
Solomon Kibret ◽  
Amanda Chie ◽  
Ming-Chieh Lee ◽  
...  

Abstract To improve food security, investments in irrigated agriculture are anticipated to increase throughout Africa. However, the extent to which environmental changes from water resource development will impact malaria epidemiology remains unclear. This study was designed to compare the sensitivity of molecular markers used in deep amplicon sequencing for evaluating malaria transmission intensities and to assess malaria transmission intensity at various proximities to an irrigation scheme. Compared to ama1, csp, and msp1 amplicons, cpmp required the smallest sample size to detect differences in infection complexity between transmission risk zones. Transmission intensity was highest within 5 km of the irrigation scheme by polymerase chain reaction positivity rate, infection complexity, and linkage disequilibrium. The irrigated area provided a source of parasite infections for the surrounding 2- to 10-km area. This study highlights the suitability of the cpmp amplicon as a measure for transmission intensities and the impact of irrigation on microgeographic epidemiology of malaria parasites.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 30 ◽  
Author(s):  
Luxon Nhamo ◽  
Greenwell Mathcaya ◽  
Tafadzwanashe Mabhaudhi ◽  
Sibusiso Nhlengethwa ◽  
Charles Nhemachena ◽  
...  

The increasing frequency and intensity of droughts and floods, coupled with increasing temperatures and declining rainfall totals, are exacerbating existing vulnerabilities in southern Africa. Agriculture is the most affected sector as 95% of cultivated area is rainfed. This review addressed trends in moisture stress and the impacts on crop production, highlighting adaptation possible strategies to ensure food security in southern Africa. Notable changes in rainfall patterns and deficiencies in soil moisture are estimated and discussed, as well as the impact of rainfall variability on crop production and proposed adaptation strategies in agriculture. Climate moisture index (CMI) was used to assess aridity levels. Southern Africa is described as a climate hotspot due to increasing aridity, low adaptive capacity, underdevelopment and marginalisation. Although crop yields have been increasing due to increases in irrigated area and use of improved seed varieties, they have not been able to meet the food requirements of a growing population, compromising regional food security targets. Most countries in the region depend on international aid to supplement yield deficits. The recurrence of droughts caused by the El Niño Southern Oscillation (ENSO) continue devastating the region, affecting livelihoods, economies and the environment. An example is the 2015/16 ENSO drought that caused the region to call for international aid to feed about 40 million people. In spite of the water scarcity challenges, cereal production continues to increase steadily due to increased investment in irrigated agriculture and improved crop varieties. Given the current and future vulnerability of the agriculture sector in southern Africa, proactive adaptation interventions are important to help farming communities develop resilient systems to adapt to the changes and variability in climate and other stressors.


2020 ◽  
Author(s):  
Niels Schuetze ◽  
Oleksandr Mialyk

<p>Due to climate change, extreme weather conditions such as droughts may have an increasing impact on the water demand and the productivity of irrigated agriculture. For the adaptation to changing climate conditions, the value of information about irrigation control strategies, future climate development, and soil conditions for the operation of deficit irrigation systems is evaluated. To treat climate and soil variability within one simulation-optimization framework for irrigation scheduling, we formulated a probabilistic framework that is based on Monte Carlo simulations. The framework can support decisions when full, deficit, and supplemental irrigation strategies are applied. For the analysis, the Deficit Irrigation Toolbox (DIT) is applied for locations in arid and semi-arid climates. It allows the analysis of the impact of information on (i) different scheduling methods (ii) different crop models, (iii) climate variability using recent and future climate scenarios, and (iv) soil variability. The provided results can serve as an easy-to-use support tool for decisions about the value of climate and soil data and/or a cost-benefit analysis of farm irrigation modernization on a local scale.</p>


2021 ◽  
Author(s):  
A G S Reddy ◽  
P N Rao ◽  
G Ravi Kumar ◽  
G Raja Babu ◽  
K Maruti Prasad

Abstract The impact of uncontrolled municipal solid waste disposal of 3800 tons per day on surface and groundwater in the downstream of Jawaharnagar dumping site was studied. The un-engineered solid waste dumping yard site spreading over an area of about 300 ha is located on topographic high (hillock), and falls in Madyala stream and Dammaiguda watersheds of Musi sub-basin. The area is underlain by granites of the Archaean age. Both surface and groundwater samples, collected covering hydrological cycles of 2011and 2012, were analyzed for major chemical constituents. During 2012, 15 samples of both seasons were tested for BOD, COD, and TOC. The mean values of some tested chemical constituents of surface water samples (15) were - EC 13066 m S/cm, TH 753, Na+ 813, K+ 530, HCO3− 978, Cl− 1304, and NO3− 262 (all in mg/l) which prove that the tanks and stream near dump yard were pools of leachate. The average values of contaminated groundwater samples among the four sampled sessions (17) indicate EC was above 5000 m S/cm, TH 1624, Cl− 1502, and SO42− 284 (all in mg/l) which were found much above the threshold values. Very few samples were found suitable for drinking purpose and most of the samples fall in Good class of WQI. Very high content of TOC, BOD, and COD in both surface and groundwater samples indicate the presence of organic pollutants sourced from domestic waste dumps. Wide temporal and spatial variability in the concentration of many ion species can be attributed to deviation in rainfall, topography, plume dynamics, and aquifer hydraulics. Low resistivity values (5 to 25 ohm.m) at a distance of 4 km from the dumping site and high infiltration rate (29 cm/hr) at Madyala stream, which were contaminant hotspots, indicate the mass flux was controlled by hydrological features. Scattered and limited distribution of contaminants can be accounted for heterogeneous nature of country rocks, retarded lateral and vertical flow of water which restricts the movement of contaminants to certain preferred pathways. The study supports the hypothesis of solid waste dumps were the epicenter of pollution which generates leachate and dissipate contaminants to the aquatic environment influenced by factors like soils, topography, and aquifer hydraulics and contaminant kinetics.


2021 ◽  
Vol 240 ◽  
pp. 02006
Author(s):  
Saadia Asouam ◽  
Farid Faik ◽  
Zine El Abidine El Morjani

The aim of this work was to study the physicochemical characterization and heavy metal testing results carried out for leachate generated by the landfilling of household and similar waste in the Tamellast landfill of Agadir. The surface and groundwater resource (often used as drinking source) samples collected from Tamellast and different water sources wells surrounding the landfill were used to find out the impact of leachate percolation on surface and groundwater quality. The Physico-chemical parameters analyzed were, pH, Electrical Conductivity (EC), Dissolved oxygen, Sodium, Potassium, while biological parameters tested were Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), E.Coli and Coliform tot. The contamination was investigated by measuring the concentration of heavy metals (Pb, Zn, Cr, Ni, As, and Fe). The Electrical Conductivity (EC), COD, BOD, Sodium, Potassium, in leachate were found to be 13180 µs/cm, 3150 mgO2/l, 1000 mgO2/l, 2000 mg/L, and 10700 mg/L, respectively. The concentration in the surrounding dug wells varied from 8.33 – 9.13 mg/L for Dissolved Oxygen, 9.8 – 18 mg/L for potassium, 0.22 – 0.6 mg/L for Fe, and 0.012 – 0.1 mg/L for total Mn. The concentration of Mn, Fe, and other parameters decreased with increasing distance between the landfill and wells.


Sign in / Sign up

Export Citation Format

Share Document