Wear Behavior of Different Materials Applied on Horizontal Mixer Blades Used in the Processing of Total Mixed Rations

2019 ◽  
Vol 62 (6) ◽  
pp. 1743-1753
Author(s):  
Tao Wang ◽  
Baoqin Wen ◽  
Za Kan ◽  
Jingbin Li

Abstract. A horizontal mixer can realize the cutting and mixing of coarse and fine feeds and achieve the purpose of scientific feeding. Studying the wear resistance of the mixer blades can improve the service life of a horizontal mixer. The wear performance of blades made of three different materials (manganese steel, tool steel, and spring steel) was studied under laboratory conditions and working conditions. In laboratory conditions, the wear scar morphology and surface elements were analyzed by means of three-dimensional topography, scanning electron microscopy, and energy spectrum analysis. The results show that the friction coefficient, wear quality, and surface roughness of manganese steel blades had the lowest values of 0.49158, 0.0061 mg, and 4.341 µm in three groups of tests. In working conditions, the wear amount and surface roughness of the manganese steel blades in different zones of the mixer were the lowest. In addition, electron backscatter diffraction (EBSD) results showed that the grain size of the manganese steel blades was the smallest. Therefore, compared with the tool steel and spring steel blades, the manganese steel blades showed excellent wear resistance.HighlightsThe wear characteristics of horizontal mixer blades with different materials were studied.The wear characteristics of the blades were studied under laboratory and working conditions.The effect of grain on the wear performance of the blades was studied by electron backscatter diffraction. Keywords: Blade, Grain, Horizontal mixer, Wear resistance, Wear test.

Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Unai Mayo ◽  
Nerea Isasti ◽  
José M. Rodríguez-Ibabe ◽  
Pello Uranga

Intercritically deformed steels present combinations of different types of ferrite, such as deformed ferrite (DF) and non-deformed ferrite (NDF) grains, which are transformed during the final deformation passes and final cooling step. Recently, a grain identification and correlation technique based on EBSD has been employed together with a discretization methodology, enabling a distinction to be drawn between different ferrite populations (NDF and DF grains). This paper presents a combination of interrupted tensile tests with crystallographic characterization performed by means of Electron Backscatter Diffraction (EBSD), by analyzing the evolution of an intercritically deformed micro-alloyed steel. In addition to this, and using the nanoindentation technique, both ferrite families were characterized micromechanically and the nanohardness was quantified for each population. NDF grains are softer than DF ones, which is related to the presence of a lower fraction of low-angle grain boundaries. The interrupted tensile tests show the different behavior of low- and high-angle grain boundary evolution as well as the strain partitioning in each ferrite family. NDF population accommodates most of the deformation at initial strain intervals, since strain reaches 10%. For higher strains, NDF and DF grains behave similarly to the strain applied.


1999 ◽  
Vol 4 (2) ◽  
pp. 174-174
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document