Toward Modeling of Nitrous Oxide Emissions Following Precipitation, Urine, and Feces Deposition on Beef Cattle Feedyard Surfaces

2020 ◽  
Vol 63 (5) ◽  
pp. 1371-1384
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Kristin E. Hales ◽  
Heidi M. Waldrip ◽  
Byeng Min ◽  
...  

HighlightsNitrous oxide is a greenhouse gas emitted from feedyard pen surfaces.Experiments were conducted to quantify nitrous oxide emissions from precipitation, urine, and feces.Nitrous oxide emissions from urine were about 30% of those from equal amounts of precipitation.Regression equations were developed for empirical modeling of emissions.Abstract. The amount of moisture deposited annually as urine (~320 mm) and feces (~95 mm) on typical semi-arid Texas beef cattle feedyard pens is considerable compared to the regional 470 mm mean annual precipitation. Precipitation is a primary factor affecting nitrous oxide (N2O) emissions from manure, but specific effects of urine and feces deposition are unknown. The objectives of this research were to (1) quantify N2O emissions following precipitation, urine, and feces deposition on a dry feedyard manure surface, and (2) develop equations for future empirical modeling of these emissions. Four experiments (Exp.) were conducted using recirculating flux chambers to quantify N2O emissions. Exp. 1 had treatments (TRT) of water (W), artificial urine (AU), and two urines collected from beef cattle fed high-quality forage (FU) or corn-based concentrate (CU). Exp. 2 had TRT of W, AU, and two feces levels (Fx1 and Fx2). In Exp. 3, N2O emissions were quantified from fresh feces pats. In Exp. 4, the effect of rainfall pH on N2O emissions was evaluated. Results from Exp. 1 showed that the W TRT had the highest mean cumulative N2O emission, while AU, FU, and CU ranged from 31.0% to 70.0% of W on an equal volume-applied basis. There was little correlation between N2O emissions and urine or water nitrogen (N) content. In Exp. 2, W again had the highest cumulative N2O. Cumulative N2O emissions expressed per unit of water added were 29.0, 3.8, 4.5, and 5.1 mg N kg-1 water added for W, AU, Fx1, and Fx2, respectively. In Exp. 3, fresh feces pats emitted no direct N2O, but N2O originated from the dry manure beneath the feces pat due to wetting. In Exp. 4, the highest N2O emissions occurred at pH 5 and pH 8, with lower emissions at pH 6 and pH 7. This research has shown that the addition of moisture to the pen surface from urine and feces contributes considerably to N2O emissions as compared to precipitation alone. The following recommendations were developed for future empirical modeling purposes: (1) N2O emissions from urine should be calculated as 32.7% of those emissions from the equivalent mass deposition of water, and (2) N2O emissions resulting from the mass of water in feces should be calculated as 15.6% of those emissions from the equivalent mass deposition of water. Keywords: Beef cattle, Greenhouse gas, Manure, Nitrous oxide, Urine, Precipitation.

2020 ◽  
Vol 63 (6) ◽  
pp. 1723-1733
Author(s):  
Zhiping Zhu ◽  
Lulu Li ◽  
Hongmin Dong ◽  
Yue Wang

HighlightsCarbon and nitrogen gas emissions from manure storage were influenced by manure characteristics.The main GHG contributor for dairy cattle, beef cattle, and broiler manure was methane.The main GHG contributor for laying hen manure was nitrous oxide (N2O).N2O emissions of the five types of manure were comparable with the IPCC recommended value.Abstract. Livestock manure management is an important source of greenhouse gases (GHGs) and ammonia (NH3) emissions from agriculture. Large amounts of manure are produced in China, while little research is available on the gas emission characteristics from different manure sources. The GHG and NH3 emissions from pig manure (PM), dairy cattle manure (DCM), beef cattle manure (BCM), layer manure (LM), and broiler manure (BM) during storage were monitored using the dynamic emission chamber method to compare the differences in gas emission characteristics among the five manure types and elucidate the key factors causing the differences. The results indicated that C and N gas emissions from manure storage were influenced by manure characteristics. The total CO2-eq (without CO2) emissions from PM, DCM, BCM, LM, BM were, respectively, 49.98 ±3.53, 1160.4 ±55.22, 692.16 ±42.98, 61.99 ±1.92, and 72.52 ±3.45 g per kg of dry basis manure during 77-day storage. The main GHG contributor for DCM, BCM, and BM was methane (CH4), accounting for 65% to 94%, and the main GHG contributor for LM was nitrous oxide (N2O). For PM, CH4 and N2O contributed equally to the total emissions. The N2O emissions of the five manure types were 0.002 to 0.013 kg N2O-N kg-1 N and were comparable with the IPCC recommended value. Keywords: Ammonia, Animal manure, Emission, Methane, Nitrous oxide.


2021 ◽  
Author(s):  
Jarno Rouhiainen ◽  
Dorothee Neukam ◽  
Rene Dechow ◽  
Rima Rabah Nasser ◽  
Henning Kage

<div> <div> <div> <p>Nitrous oxide is an important greenhouse gas. In Germany, around 50% of annual nitrous oxide emissions originate from managed agricultural land. Among other options, the mitigation of nitrous oxide emissions from arable land is one important measure to reduce greenhouse gas emissions of the agricultural sector. Several mitigation options have been examined including reduced application of nitrogen fertilizers, timing of fertilizer applications, crop residue management, pH management or application of nitrification inhibitors. Depending on the underlying natural conditions (soil, climate), these measures vary in their mitigation efficiency.</p> <p>Suitable methods are required to evaluate and quantify mitigation strategies for nitrous oxide emissions at a regional and national scale. For this purpose, several model approaches have been developed ranging from simple stochastic equations to sophisticated process-based models. Because of their reduced input requirements, stochastic approaches like emission factor approaches are common to quantify nitrous oxide emissions and mitigation effects while process based models are promising tools to describe interactions of natural conditions and anthropogenic activities. They have the potential to be more accurate and informative.</p> <p>However, due to the complex nature of N2O producing processes in croplands and the high spatial and temporal variability of N2O fluxes the portability of model developments from one site to another site or the validity of upscaling methods are questionable. We collected available field experimental data measuring nitrous oxide emissions to improve and analyze the prediction accuracy of model approaches in Germany, recently with data of 19 sites and 1251 site years in total and focus on the crop types wheat, maize and rape.</p> <p>Here, we present this data set and show results of model applications and a multi-site sensitivity analyses with the process based model DNDCv.Can. Contrary to other DNDC versions, DNDCvCAN allows to modify a range of internal parameters.</p> <p>We performed sensitivity analyses based on the Morris method by varying 45 model parameters. Each participating site was modeled for a three years period and the simulations were repeated for each parameter 500 times, resulting to 23000 simulations per site. Highest impact on N2O emissions were caused by soil concentrations of humads, humus and black carbon and their related C/N ratios. Surprisingly, N2O emissions showed only minor sensitivites in general on hydrological parameters and</p> </div> </div> </div><div> <div> <div> <p>on parameters related to N cycling in soil profile. Parameters controling macropore flow, nitrifier growth and denitrifier growth made here an exception. Sets of ranked most sensitive parameters varied between sites showing that multi-site sensitivity analyses might be helpful to identify global and local parameters for model calibration and help to assess regional mitigation effects.</p> </div> </div> </div>


2019 ◽  
Vol 62 (5) ◽  
pp. 1173-1183
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Heidi M. Waldrip ◽  
Byeng R. Min ◽  
Bryan L. Woodbury ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas (GHG) with a global warming potential much greater than that of carbon dioxide (CO2). Nitrous oxide is emitted from the manure-covered pen surfaces of open-lot beef cattle feedyards, and more than six million beef cattle are fed in the Southern Great Plains. A field research project was conducted to determine the temporal and spatial variability of N2O emissions from the pen surfaces of a commercial feedyard before and after simulated rainfall. Two week-long monitoring cycles were conducted in April and August 2018 in the Texas Panhandle. Temporal variability was assessed using six continuous automated flux chambers per pen, and spatial variability was assessed using a portable chamber at up to 61 locations in a single pen. Diurnal fluxes varied 5-fold to 10-fold over a 24 h period. Flux varied seasonally, with arithmetic means of 0.56 mg N2O-N m-2 h-1 in April and 3.21 mg N2O-N m-2 h-1 in August. Fluxes measured spatially across the pen surface over a 2 h period at midday were lognormally distributed, with April geometric and arithmetic means of -0.81 and 0.80 mg N2O-N m-2 h-1, respectively, and August geometric and arithmetic means of 0.095 and 2.6 mg N2O-N m-2 h-1, respectively. Fluxes peaked shortly after simulated rainfall. Arithmetic mean N2O-N flux for the 2 d after rainfall increased over the background level by 4.6-fold in April and 1.7-fold in August. Manure properties measured at the time of flux measurement were poorly correlated with N2O emissions and were of little value for predicting N2O emissions, which confirmed that further work is warranted on the biochemistry of feedyard manure. The results of this field research will help refine models for predicting N2O emissions from open-lot beef cattle feedyards and help to develop effective mitigation methods to conserve feedyard N. Keywords: Beef cattle, Flux chamber, Greenhouse gas, Manure, Nitrous oxide, Rainfall.


2018 ◽  
Vol 58 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. N. Ward ◽  
K. B. Kelly ◽  
J. W. Hollier

Nitrous oxide (N2O) from excreta deposited by grazing ruminants is a major source of greenhouse gas emissions in Australia. Experiments to measure N2O emissions from dairy cow dung, urine and pond sludge applied to pasture, and the effectiveness of the nitrification inhibitor nitrapyrin in reducing these emissions, were conducted in south-western Victoria, Australia. In Experiment 1, emissions from urine, with and without nitrapyrin, and from dung were measured. Treatments applied in September 2013 resulted in cumulative emissions (245 days) of 0.60, 5.35, 4.15 and 1.02 kg N2O-nitrogen (N)/ha for the nil, urine (1000 kg N/ha), urine (1000 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (448 kg N/ha) treatments, respectively, giving emission factors of 0.47% and 0.09% for urine and dung respectively. Nitrapyrin reduced N2O emissions from urine for 35 days, with an overall reduction in emissions of 25%. In Experiment 2, sludge, with and without nitrapyrin, was applied in May 2014, and dung was applied in May, August, November 2014 and January 2015. Cumulative emissions (350 days) were 0.19, 0.49, 0.31 and 0.39 kg N2O-N/ha for the nil, sludge (308 kg N/ha), sludge (308 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (total 604 kg N/ha) treatments, respectively, giving emission factors of 0.10% and 0.03% for sludge and dung. Nitrapyrin reduced N2O emissions from sludge for 60 days, with an overall reduction in emissions of 59%. A third experiment on two soil types compared emissions from urine and dung, with and without nitrapyrin, applied in different seasons of the year. Emissions were highly seasonal and strongly related to soil water status. Emission factors (90 days) ranged from 0.02% to 0.19% for urine and 0.01% to 0.12% for dung. Nitrapyrin reduced emissions from urine by 0–35% and had little effect on emissions from dung. Overall, the experiments found that nitrapyrin was an effective tool in reducing emissions from urine, dung and sludge applied to pasture, but the magnitude varied across the year, with nitrapyrin being most effective when soils had >70% water-filled pore space when major emissions occurred.


2018 ◽  
Vol 61 (3) ◽  
pp. 1049-1061 ◽  
Author(s):  
David B. Parker ◽  
Heidi M. Waldrip ◽  
Kenneth D. Casey ◽  
Bryan L. Woodbury ◽  
Mindy J. Spiehs ◽  
...  

Abstract. Temperature is a primary factor affecting greenhouse gas (GHG) emissions from agricultural soils, but little is known about how temperature affects nitrous oxide (N2O) emissions from manure. The majority of grain-fed cattle in the Texas Panhandle are finished in large, earthen-surfaced, open-lot feedyards. Manure accumulates in feedyard pens and creates an environment high in nitrogen (N) and carbon (C) that can lead to N2O losses. In previous studies, N2O-N emissions from feedyard manure have been highly variable, ranging from negligible amounts from dry manure to 200 mg m-2 h-1 after a simulated rainfall event. The objective of this research was to determine how temperature affects N2O emissions from feedyard manure following rainfall. A recirculating flow-through, non-steady-state (RFT-NSS) chamber system with 1 m2 pans was used to monitor N2O emissions from beef cattle manure following a single 25.4 mm simulated rainfall event. Emissions were monitored at manure temperatures of 5.0°C, 11.2°C, 17.2°C, 21.5°C, 26.8°C, 31.0°C, 38.1°C, and 46.2°C. At all temperatures, a single N2O episode was observed following rainfall, peaking 2 to 11 h after rainfall with duration of 2 to 3 d. A second N2O episode was observed at temperatures =31.0°C, peaking 3 to 4 d after rainfall with duration of 18 d. When present, the second N2O episode accounted for 72% to 83% of the 20 d cumulative emissions. A step-increase in cumulative N2O emissions was observed between 26.8°C and 31.0°C, believed to be due to a major shift from denitrification to nitrification as the primary process of N2O production. Empirical regression models were developed for predicting cumulative N2O emissions based on temperature, which showed 88% agreement between predicted and field-observed N2O-N flux rates. These regression models will be useful for further quantification of N2O emissions from open-lot beef cattle feedyards in the U.S. Southern High Plains and for assessment of practices for reducing GHG emissions. Keywords: Beef cattle, Chamber, Greenhouse gas, Manure, Nitrous oxide, Precipitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


Sign in / Sign up

Export Citation Format

Share Document