scholarly journals Coalescence-induced jumping of immersed and suspended droplets onmicrostructured substrates

Author(s):  
Samaneh Farokhirad ◽  
Mahmood Mohammadi Shad ◽  
Taehun Lee

The coalescence-induced jumping of liquid droplets on superhydrophobic structured substrates is investigated numerically using a three-dimensional multiphase lattice Boltzmann method. The numerical experiments on evolution of droplets during jumping process show higher jumping velocity and height from superhydrophobic substrates structured with a periodic array of square pillars, than flat superhydrophobic substrateswith an equilibrium contact angle of 180◦. The results further reveal a strong effect of pillars on the vertical jumping velocity and the final quasiequilibrium height of the merged droplet as a function of air and liquid viscosity, as well as air inertia. As for substrate wettability, it is found that, compared to the flat superhydrophobic substrate, the critical contact angle where the merged droplet jumps away from substrate is reduced for pillared substrate and is about 120◦. It is also observed that the droplet initial placement on a substrate with a square array of pillars has an important effect on the spontaneous jumping of the coalesced droplet, and a Wenzel–Cassie wetting transition upon coalescence is observed for droplets that are initially immersed within the pillars.

Author(s):  
Rajesh Leeladhar ◽  
Wei Xu ◽  
Chang-Hwan Choi

In this paper, nanofluid droplets (fluid containing metal nanoparticles) were subjected to evaporation on a nanoporous superhydrophobic surface to study the effects of nanoparticles on evaporation kinetics, wetting dynamics, and dry-out patterns. Metal nanoparticles (gold chloride) of three different sizes (10, 100, and 250 nm) at three different concentrations (0.001, 0.01, and 0.1% wt) were tested as nanofluids, uniformly dispersed in deionized water. Anodized alumina membranes (200 nm in pore diameter) were tested as nanoporous superhydrophobic surfaces, coated with a self assembled monolayer (SAM). During the course of evaporation in a room condition, the change of a contact angle, contact diameter, height, and volume was measured by a goniometer and compared with that of the base fluid (water) taken as a control. The initial equilibrium contact angle of the nanofluids was significantly affected by the nanoparticle sizes and concentrations. During evaporation, the evaporation behavior for the nanofluids exhibited a complete different mode from that of the base fluid. In terms of a contact angle, nanofluids showed slower decrease rate than base fluid. Nanofluid contact diameter remained almost a constant throughout evaporation with a slight change only at the very end of evaporation stage, whereas the base fluid showed a sequence of constant, increase, and mixed states of increase/decrease behavior. The nanofluids also showed a clear distinction in the evaporation rates, resulting in slower rate than base fluid. The variation of the nanoparticle sizes and concentrations did not make significant difference in the evaporation rate within the tested conditions. No abrupt change in a contact angle and diameter was observed during the evaporation, suggesting that no remarkable wetting transition from Cassie (de-wetting) to Wenzel (wetting) state occurred. The scanning electron microscope (SEM) images of the deposited nanoparticles after complete evaporation of solvent showed unique dry-out patterns depending on nanoparticle sizes and concentrations, e.g., a thick ring-like pattern with larger particle sizes while a uniformly distributed pattern with smaller particles at higher concentrations.


2019 ◽  
Vol 5 (12) ◽  
pp. eaax1853 ◽  
Author(s):  
M. J. Qazi ◽  
H. Salim ◽  
C. A. W. Doorman ◽  
E. Jambon-Puillet ◽  
N. Shahidzadeh

Salt creeping is a ubiquitous phenomenon in which crystals precipitate far from an evaporating salt solution boundary, which constitutes a major problem in outdoor electronics, civil engineering, artworks, and agriculture. We report a novel experimental approach that allows to quantitatively describe the creeping mechanism and demonstrate its universality with respect to different salts. We show that there exists a critical contact angle below which salt creeping occurs, provided also the nucleation of multiple crystals is favored. The precipitation of new crystals happens ahead of the contact line by the meniscus that progressively advances over the crystals forming also nanometric precursor films. This enlarges the evaporative area, causing an exponential increase in the crystal mass in time. The self-amplifying process then results in a spectacular three-dimensional crystal network at macroscopic distances from the solution reservoir. These findings also allow us to control the creeping by using crystallization modifiers.


Author(s):  
Qilin Wang ◽  
Yan Li ◽  
Zhicheng Yu ◽  
Bin Guo

Gravity-driven displacement of droplet on an inclined micro-grooved surface is studied using Pseudo-potential model of lattice Boltzmann method. To validate the numerical method, we find good agreement of the LB simulations with the pressure difference by Laplace’s law. The equilibrium contact angle of a droplet wetting on a smooth horizontal surface is studied as a function of the wettability, finding good agreement with an empirical scheme obtained with Young’s equation. The dynamic behavior of a droplet wetting on micro-grooved horizontal surface is found to be complex and greatly affected by the fraction of the grooved area and the groove width, the results indicate that the effect of grooves on contact angle is dependent on the fraction of the grooved area and the groove width has not a consistent effect on contact angles. For an inclined nonwetting micro-grooved surface, in given range, higher fraction of the grooved area and smaller groove width lead to greater benefit for droplet sliding down. What’s more, the results indicate that higher gravity value leads to a higher decrease of movement resistance of the droplet by decreasing the contact area between the droplet and solid surface.


2003 ◽  
Vol 123 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Bo-Sun Kang ◽  
Seung-Hak Baek ◽  
James Mah ◽  
Won-Sik Yang

2002 ◽  
Vol 727 ◽  
Author(s):  
S. Ichikawa ◽  
T. Akita ◽  
M. Okumura ◽  
M. Haruta ◽  
K. Tanaka

AbstractThe catalytic properties of nanostructured gold catalyst are known to depend on the size of the gold particles and to be activated when the size decreases to a few nanometers. We investigated the size dependence of the three-dimensional nanostructure on the mean inner potential of gold catalysts supported on titanium oxide using electron holography and high-resolution electron microscopy (HREM). The contact angle of the gold particles on the titanium oxide tended to be over 90° for gold particles with a size of over 5 nm, and below 90° for a size of below 2 nm. This decreasing change in the contact angle (morphology) acts to increase the perimeter and hence the area of the interface between the gold and titanium oxide support, which is considered to be an active site for CO oxidation. The mean inner potential of the gold particles also changed as their size decreased. The value of the inner potential of gold, which is approximately 25 V in bulk state, rose to over 40 V when the size of the gold particles was less than 2 nm. This phenomenon indicates the existence of a charge transfer at the interface between gold and titanium oxide. The 3-D structure change and the inner potential change should be attributed to the specific electronic structure at the interface, owing to both the “nano size effect” and the “hetero-interface effect.”


2013 ◽  
Vol 83 (5) ◽  
pp. 877-884 ◽  
Author(s):  
Xiaomo Liu ◽  
Peng Ding ◽  
Jiuxiang Lin

ABSTRACT Objective: To explore how the position of the bracket slots relative to the archwire influences the friction between them, and how bracket design affects the critical contact angle (θc). Materials and Methods: Two kinds of stainless steel archwires (0.016 and 0.019 × 0.025-inch) were tested against four kinds of brackets (Transmission Straight Archwire bracket, Domestic MBT bracket, Tip-Edge Plus bracket, and BioQuick self-ligation bracket) in the dry state. Resistance to sliding (RS) was measured as an increase in contact angle (θ). The value of θc was calculated by two linear regression lines. Results: Friction remained stable when θ < θc, then increased linearly when θ > θc. The θc values of the Tip-Edge Plus bracket and Transmission Straight Archwire bracket were significantly larger than those for the Domestic MBT bracket and BioQuick self-ligation bracket. Conclusions: The relationship between the archwire and bracket slot significantly affects the resistance to sliding. The “edge-off” structure of the Tip-Edge Plus bracket and Transmission Straight Archwire bracket could help to increase the θc value, and to expand the passive configuration range.


2012 ◽  
Author(s):  
Narjes Shojaikaveh ◽  
Cas Berentsen ◽  
Susanne Eva Johanne Rudolph-Floter ◽  
Karl Heinz Wolf ◽  
William Richard Rossen

Author(s):  
Anand N. P. Radhakrishnan ◽  
Marc Pradas ◽  
Serafim Kalliadasis ◽  
Asterios Gavriilidis

Micro-engineered devices (MED) are seeing a significant growth in performing separation processes1. Such devices have been implemented in a range of applications from chemical catalytic reactors to product purification systems like microdistillation. One of the biggest advantages of these devices is the dominance of capillarity and interfacial tension forces. A field where MEDs have been used is in gas-liquid separations. These are encountered, for example, after a chemical reactor, where a gaseous component being produced needs immediate removal from the reactor, because it can affect subsequent reactions. The gaseous phase can be effectively removed using an MED with an array of microcapillaries. Phase-separation can then be brought about in a controlled manner along these capillary structures. For a device made from a hydrophilic material (e.g. Si or glass), the wetted phase (e.g. water) flows through the capillaries, while the non-wetted dispersed phase (e.g. gas) is prevented from entering the capillaries, due to capillary pressure. Separation of liquid-liquid flows can also be achieved via this approach. However, the underlying mechanism of phase separation is far from being fully understood. The pressure at which the gas phase enters the capillaries (gas-to-liquid breakthrough) can be estimated from the Young-Laplace equation, governed by the surface tension (γ) of the wetted phase, capillary width (d) and height (h), and the interface equilibrium contact angle (θeq). Similarly, the liquid-to-gas breakthrough pressure (i.e. the point at which complete liquid separation ceases and liquid exits through the gas outlet) can be estimated from the pressure drop across the capillaries via the Hagen-Poiseuille (HP) equation. Several groups reported deviations from these estimates and therefore, included various parameters to account for the deviations. These parameters usually account for (i) flow of wetted phase through ‘n’ capillaries in parallel, (ii) modification of geometric correction factor of Mortensen et al., 2005 2 and (iii) liquid slug length (LS) and number of capillaries (n) during separation. LS has either been measured upstream of the capillary zone or estimated from a scaling law proposed by Garstecki et al., 2006 3. However, this approach does not address the balance between the superficial inlet velocity and net outflow of liquid through each capillary (qc). Another shortcoming of these models has been the estimation of the apparent contact angle (θapp), which plays a critical role in predicting liquid-to-gas breakthrough. θapp is either assumed to be equal to θeq or measured with various techniques, e.g. through capillary rise or a static droplet on a flat substrate, which is significantly different from actual dynamic contact angles during separation. In other cases, the Cox-Voinov model has been used to calculate θapp from θeq and capillary number. Hence, the empirical models available in the literature do not predict realistic breakthrough pressures with sufficient accuracy. Therefore, a more detailed in situ investigation of the critical liquid slug properties during separation is necessary. Here we report advancements in the fundamental understanding of two-phase separation in a gas-liquid separation (GLS) device through a theoretical model developed based on critical events occurring at the gas-liquid interfaces during separation.


Sign in / Sign up

Export Citation Format

Share Document