scholarly journals Production of bioethanol from sago hampas via Simultaneous Saccharification and Fermentation (SSF)

2018 ◽  
Vol 10 (4) ◽  
pp. 240-245 ◽  
Author(s):  
HUANG CHAI HUNG ◽  
DAYANG SALWANI AWANG ADENI ◽  
QUEENTETY JOHNNY ◽  
MICKY VINCENT

Huang CH, Adeni DSA, Johnny Q, Vincent M. 2018. Production of bioethanol from sago hampas via Simultaneous Saccharification and Fermentation (SSF). Nusantara Bioscience 10: 240-245. Sago hampas is an inexpensive, renewable and abundant agro-industrial residue that can be exploited to produce bioethanol. In this study, ethanol production was performed via simultaneous saccharification and fermentation (SSF) on fresh sago hampas at 2.5%, 5.0% and 7.5% (w/v) feedstock loadings with the aid of amylolytic enzymes, cellulolytic enzymes and Saccharomyces cerevisiae, under anaerobic condition for five days with a constant agitation of 150 rpm and ambient temperature. Results obtained indicated that SSF with 5.0% (w/v) sago hampas loading produced the highest ethanol yield at 17.79 g/L (79.65% Theoretical Ethanol Yield, TEY), while SSF using 2.5% and 7.5% (w/v) sago hampas produced ethanol at only 8.38 g/L (75.00% TEY) and 23.28 g/L (69.48% TEY), respectively. Total biomass reduction was recorded between 66.3% to 71.3% by the end of the SSF period. This study demonstrated that fresh sago hampas is a promising feedstock for bioethanol production as yields are generally high for all the substrate loadings tested. Moreover, bioethanol production using fresh sago hampas may assist in reducing pollution caused by sago waste accumulation.

Author(s):  
Mingyan Yang ◽  
Hairui Ji ◽  
J.Y. ZHU

This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), Quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL-pretreated Douglas-fir forest residue without detoxification. The result indicated Q-SSF and SSF were obviously superior to SHF operation in terms of ethanol yield. The enzyme loading showed a strong positive correlation between enzyme loading and the ethanol yield. The nutrient supplementation and sterility was not necessary for ethanol production from SPORL-pretreated Douglas-fir. The yeast loading showed no significant influence on the ethanol yield for typical SSF conditions. The terminal ethanol titer of 43.2 g/L, or 75.1% theoretical based on glucose, mannose, and xylose theoretical was achieved when SSF was conducted at the condition of following: whole slurry solids loading of 15%, enzyme loading of 20 FPU/g glucan, 1.8 g/kg (wet) yeast loading, without nutrition supplementation and sterilization, at 38°C, on shake flask at 150 rpm for 96h. It is believed that with mechanical mixing, enzyme loading can be substantially reduced with affect ethanol yield by using a long fermentation time.


2019 ◽  
Vol 1 ◽  
pp. 153-160
Author(s):  
I J Ona ◽  
H O Agogo ◽  
M S Iorungwa

The production of ethanol from cassava flour using Zymomonas mobilis a gram negative bacterium was conducted at 30oC, 33oC, 35oC and 37oC. The fermentation reaction was also carried out at different substrate concentrations; 5% W/V, 7% W/V and 10% W/V. The microorganism Zymomonas mobilis was detected in palm wine, isolated and identified. It was found to be gram negative, oxidase negative, catalase positive, anaerobic and plump rods with an unusual width. Results obtained from the simultaneous saccharification and fermentation reactions carried out with Zymomonas mobilis showed that maximum theoretical ethanol yield of 63% was obtained for 7% W/V cassava flour at 35oC. This was followed by a theoretical yield of 56.23 and 54.12 for 5% W/V and 10% W/V cassava flour, respectively. Fermentations at 30oC and 33 oC gave similar results with 7% W/V cassava producing higher ethanol yield when compared to 5% W/V and 10% W/V. Fermentation reactions at 37oC gave the lowest ethanol yields. The optimum pH for the simultaneous saccharification and fermentation of cassava was found to be pH of 6.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


2011 ◽  
Vol 87 (2) ◽  
pp. 170-176 ◽  
Author(s):  
Dušanka J. Pejin ◽  
Ljiljana V. Mojović ◽  
Jelena D. Pejin ◽  
Olgica S. Grujić ◽  
Siniša L. Markov ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 923-936 ◽  
Author(s):  
Ewelina Strąk-Graczyk ◽  
Maria Balcerek

Abstract The rising population and increasing demand for food place added pressure on the agricultural sector to maintain high process efficiency while implementing environmentally friendly methods. In this study, we investigate the effect of pre-hydrolysis of native rye starch and its influence on the yield of ethanol obtained by simultaneous saccharification and fermentation (SSF) from high gravity rye mashes with 25% and 28% w w−1 dry matter content. Fermentation was carried out in a 3-day system at a temperature of 35 ± 1 °C using the dry distillery yeast Ethanol Red (Saccharomyces cerevisiae). The characteristics of the tested raw material and changes in the native rye starch during enzymatic hydrolysis were analyzed using a scanning electron microscope (SEM). The SEM images revealed characteristic changes on the surface of the starch, which was found to have a layered structure, as well as interesting behavior by the yeast during SSF when the glucose concentration in the environment was lowered. Both in the mashes with 25% and 28% w w−1 dry matter, starch pre-hydrolysis did not significantly increase either the initial amounts of sugars available to the yeast or the fermentation efficiency and ethanol yield in comparison to the mashes without this pre-treatment.


Sign in / Sign up

Export Citation Format

Share Document