scholarly journals Batch Fermentation Options for High Titer Bioethanol Production from a SPORL Pretreated Douglas-fir Forest Residue without Detoxification

Author(s):  
Mingyan Yang ◽  
Hairui Ji ◽  
J.Y. ZHU

This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), Quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL-pretreated Douglas-fir forest residue without detoxification. The result indicated Q-SSF and SSF were obviously superior to SHF operation in terms of ethanol yield. The enzyme loading showed a strong positive correlation between enzyme loading and the ethanol yield. The nutrient supplementation and sterility was not necessary for ethanol production from SPORL-pretreated Douglas-fir. The yeast loading showed no significant influence on the ethanol yield for typical SSF conditions. The terminal ethanol titer of 43.2 g/L, or 75.1% theoretical based on glucose, mannose, and xylose theoretical was achieved when SSF was conducted at the condition of following: whole slurry solids loading of 15%, enzyme loading of 20 FPU/g glucan, 1.8 g/kg (wet) yeast loading, without nutrition supplementation and sterilization, at 38°C, on shake flask at 150 rpm for 96h. It is believed that with mechanical mixing, enzyme loading can be substantially reduced with affect ethanol yield by using a long fermentation time.

2018 ◽  
Vol 10 (4) ◽  
pp. 240-245 ◽  
Author(s):  
HUANG CHAI HUNG ◽  
DAYANG SALWANI AWANG ADENI ◽  
QUEENTETY JOHNNY ◽  
MICKY VINCENT

Huang CH, Adeni DSA, Johnny Q, Vincent M. 2018. Production of bioethanol from sago hampas via Simultaneous Saccharification and Fermentation (SSF). Nusantara Bioscience 10: 240-245. Sago hampas is an inexpensive, renewable and abundant agro-industrial residue that can be exploited to produce bioethanol. In this study, ethanol production was performed via simultaneous saccharification and fermentation (SSF) on fresh sago hampas at 2.5%, 5.0% and 7.5% (w/v) feedstock loadings with the aid of amylolytic enzymes, cellulolytic enzymes and Saccharomyces cerevisiae, under anaerobic condition for five days with a constant agitation of 150 rpm and ambient temperature. Results obtained indicated that SSF with 5.0% (w/v) sago hampas loading produced the highest ethanol yield at 17.79 g/L (79.65% Theoretical Ethanol Yield, TEY), while SSF using 2.5% and 7.5% (w/v) sago hampas produced ethanol at only 8.38 g/L (75.00% TEY) and 23.28 g/L (69.48% TEY), respectively. Total biomass reduction was recorded between 66.3% to 71.3% by the end of the SSF period. This study demonstrated that fresh sago hampas is a promising feedstock for bioethanol production as yields are generally high for all the substrate loadings tested. Moreover, bioethanol production using fresh sago hampas may assist in reducing pollution caused by sago waste accumulation.


2021 ◽  
Vol 24 (12) ◽  
pp. 2077-2083
Author(s):  
S.O. Osemwengie ◽  
E.I. Osagie ◽  
B. Onwukwe

The bioethanol production from waste is acquiring attraction as a strategy for increasing energy security. This study aims to optimize the production of ethanol from cassava peel using Box Bhenken experimental design. The total carbohydrate content of about 90% in cassava peel was subjected to enzymatic hydrolysis using Alpha-amylase followed by Simultaneous Saccharification and Fermentation (SSF) by Saccharomyces cerevisiae for bioethanol production. The production of bioethanol from cassava peels was investigated for 1-4 hours (hydrolysis time), 0.5–1.5mg/L (enzyme loading), and 1-5 days (incubation time). A statistical model was developed and validated to predict the yield of bioethanol after fermentation, and the Response Surface Methodology (RSM) was used to optimize the conditions. The results revealed that the maximum ethanol yield of 1.911% was obtained at the optimum hydrolysis time, enzyme loading, and incubation time (i.e. 2.5 hours, 1 mg/L, and 3 days respectively).


2011 ◽  
Vol 236-238 ◽  
pp. 108-111 ◽  
Author(s):  
Yong Tang ◽  
Zhao Qing Su ◽  
Dan Qing Zhao ◽  
Xiang Qi ◽  
Jian Xin Jiang

Simultaneous saccharification and fermentation is an attractive process configuration for bioethanol. However, the process cost in SSF is still high. Further reductions in cost are expected with reduction of enzyme addition and the use of waste agricultural or industrial materials as feedstock. Surfactant addition is a simple method to reduce the amount of enzyme loading. In the present work we explore the effect of Gleditsia Saponin, an inexpensive and natural surfactant, on SSF of furfural residue, a main waste of furfural industry in China, for ethanol production. Gleditsia Saponin addition even at low concentration, 0.04 g/l, increased the ethanol yield by 9.9%. Meanwhile, when Gleditsia Saponin addition was 0.16 g/l, the yield was increased by 22.8% and the enzyme activity significantly increased in the liquid fraction at the end of SSF, which would contribute to recover and recycle enzyme. Gleditsia Saponin addition at 1.25 g/l had a better performance in improving SSF efficiency than that of 2.5 g/l Tween-20 addition. The positive effects of Gleditsia Saponin addition on SSF, such as less enzyme loading and shorter residence time could also been observed.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document