scholarly journals Skeletal muscle infarction in diabetes mellitus

Research ◽  
2014 ◽  
Vol 1 ◽  
Author(s):  
Guha K Venkatraman ◽  
Swamy Y Venkatesh
2019 ◽  
Vol 15 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Eric Francelino Andrade ◽  
Víviam de Oliveira Silva ◽  
Débora Ribeiro Orlando ◽  
Luciano José Pereira

Introduction: Diabetes mellitus is a metabolic disease characterized by high glycemic levels for long periods. This disease has a high prevalence in the world population, being currently observed an increase in its incidence. This fact is mainly due to the sedentary lifestyle and hypercaloric diets. Non-pharmacological interventions for glycemic control include exercise, which promotes changes in skeletal muscle and adipocytes. Thus, increased glucose uptake by skeletal muscle and decreased insulin resistance through modulating adipocytes are the main factors that improve glycemic control against diabetes. Conclusion: It was sought to elucidate mechanisms involved in the improvement of glycemic control in diabetics in front of the exercise.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
David P. McBey ◽  
Michelle Dotzert ◽  
C. W. J. Melling

Abstract Background Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). Purpose: This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. Methods Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. Results The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. Conclusions These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.


2019 ◽  
Vol 126 (3) ◽  
pp. 626-637 ◽  
Author(s):  
Jefferson C. Frisbee ◽  
Matthew T. Lewis ◽  
Jonathan D. Kasper ◽  
Paul D. Chantler ◽  
Robert W. Wiseman

Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.


2014 ◽  
Vol 61 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Kanako Shishikura ◽  
Keiji Tanimoto ◽  
Satoshi Sakai ◽  
Yoshimi Tanimoto ◽  
Jungo Terasaki ◽  
...  

1972 ◽  
Vol 286 (9) ◽  
pp. 454-460 ◽  
Author(s):  
Joseph S. Alpert ◽  
Jay D. Coffman ◽  
Marios C. Balodimos ◽  
Lajos Koncz ◽  
J. Stuart Soeldner

Sign in / Sign up

Export Citation Format

Share Document