Competitiveness of Timber Floor Elements: An Assessment of Structural Properties, Production, Costs, and Carbon Emissions

2021 ◽  
Vol 71 (2) ◽  
pp. 111-123
Author(s):  
Sveinung Nesheim ◽  
Kjell Arne Malo ◽  
Nathalie Labonnote

Abstract As long-spanning timber floor elements attempt to achieve a meaningful market share, proof of serviceability continues to be a demanding task as international consensus remains unsettled. Initiatives to improve vibration levels are achievable, but a lack of confidence in the market is resulting in increases in margins for both manufacturers and contractors. State-of-the-art concrete alternatives are offered at less than half the price, and even though timber floors offer reduced completion costs and low carbon emissions, the market is continuously reserved. Cost reductions for timber floor elements to competitive levels must be pursued throughout the product details and in the stages of manufacturing. As new wood products are introduced to the market, solution space is increased to levels that demand computerized optimization models, which require accurate expenditure predictions. To meet this challenge, a method called item-driven activity-based consumption (IDABC) has been developed and presented in this study. The method establishes an accurate relationship between product specifications and overall resource consumption linked to finished manufactured products. In addition to production time, method outcomes include cost distributions, including labor costs, and carbon emissions for both accrued materials and production-line activities. A novel approach to resource estimation linked to assembly friendliness is also presented. IDABC has been applied to a timber component and assembly line operated by a major manufacturer in Norway and demonstrates good agreement with empirical data.

Author(s):  
SAFITRI NURHIDAYATI ◽  
RIZKI AMELYA SYAM

This study aims to analyze whether the difference that occurs in the cost of raw materials, direct labor, and factory overhead costs between the standard costs and the actual costs in PLTU LATI is a difference that is favorable or unfavorable. Data collection techniques with field research and library research. The analytical tool used is the analysis of the difference in raw material costs, the difference in direct labor costs and the difference in factory overhead costs. The hypothesis in this study is that the difference allegedly occurs in the cost of raw materials, direct labor costs, and factory overhead costs at PT Indo Pusaka Berau Tanjung Redeb is a favorable difference. The results showed that the difference in the cost of producing MWh electricity at PT Indo Pusaka Berau Tanjung Redeb in 2018, namely the difference in the price of raw material costs Rp. 548,029.80, - is favorable, the difference in quantity of raw materials is Rp. 957,216,602, - is (favorable) , the difference in direct labor costs Rp 2,602,642,084, - is (unfavorable), and the difference in factory overhead costs Rp 8,807,051,422, - is (favorable) This shows that the difference in the overall production cost budget is favorable or profitable. This beneficial difference shows that the company is really able to reduce production costs optimally in 2018.  


2019 ◽  
Vol 4 (12) ◽  
Author(s):  
T B A

Global warming, climate change is now affecting the world. The effort of the leaders to achieving the sustainable development is from New Urban Agenda (NUA), Sustainable Development Goals (SDG’s) and local level is local authorities.  SDG’s goal number 13 takes urgent action to combat climate change and its impact also SDG’s number 11 to sustainable cities and communities. The gap of this paper  Different cities face different challenges and issues. Local authorities will play a significant role in undertaking policy initiatives to combat carbon emissions of the city. Low Carbon Cities (LCC) is to reduce carbon emissions in all human activities in cities.  The objective of this paper is by applying the LCCF Checklist in planning permission for sustainable development. The methodology of this research is a mixed-method, namely quantitative and qualitative approach. The survey methods are by interview, questionnaire, and observation. Town planners are the subject matter expert in managing the planning permission submission for the development control of their areas. Descriptive statistical analysis will be used to show the willingness of the stakeholders, namely the developers and planning consultants in implementing of the LCCF. The contribution of this research will gauge readiness at the local authorities level. The findings of the LCCF checklist are identified as important in planning permission into the development control process. Surprisingly, that challenges and issues exist in multifaceted policy implementation the LCCF Checklist in a local authority. Finally based on Subang Jaya Municipal Councils, the existing approach in the application of the LCCF Checklist in the development control process will be useful for development control in a local authority towards sustainable development.  


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
Rakesh Kumar ◽  
Gaurav Dhiman ◽  
Neeraj Kumar ◽  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
...  

AbstractThis article offers a comparative study of maximizing and modelling production costs by means of composite triangular fuzzy and trapezoidal FLPP. It also outlines five different scenarios of instability and has developed realistic models to minimize production costs. Herein, the first attempt is made to examine the credibility of optimized cost via two different composite FLP models, and the results were compared with its extension, i.e., the trapezoidal FLP model. To validate the models with real-time phenomena, the Production cost data of Rail Coach Factory (RCF) Kapurthala has been taken. The lower, static, and upper bounds have been computed for each situation, and then systems of optimized FLP are constructed. The credibility of each model of composite-triangular and trapezoidal FLP concerning all situations has been obtained, and using this membership grade, the minimum and the greatest minimum costs have been illustrated. The performance of each composite-triangular FLP model was compared to trapezoidal FLP models, and the intense effects of trapezoidal on composite fuzzy LPP models are investigated.


Author(s):  
Hongpeng Guo ◽  
Sidong Xie ◽  
Chulin Pan

This paper focuses on the impact of changes in planting industry structure on carbon emissions. Based on the statistical data of the planting industry in three provinces in Northeast China from 1999 to 2018, the study calculated the carbon emissions, carbon absorptions and net carbon sinks of the planting industry by using crop parameter estimation and carbon emissions inventory estimation methods. In addition, the multiple linear regression model and panel data model were used to analyze and test the carbon emissions and net carbon sinks of the planting industry. The results show that: (1). The increase of the planting area of rice, corn, and peanuts in the three northeastern provinces of China will promote carbon emissions, while the increase of the planting area of wheat, sorghum, soybeans, and vegetables will reduce carbon emissions; (2). Fertilizer application, technological progress, and planting structure factors have a significant positive effect on net carbon sinks, among which the changes in the planting industry structure have the greatest impact on net carbon sinks. Based on the comprehensive analysis, it is suggested that, under the guidance of the government, resource endowment and location advantages should be given full play to, and the internal planting structure of crops should be reasonably adjusted so as to promote the development of low-carbon agriculture and accelerate the development process of agricultural modernization.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 298
Author(s):  
Fekremariam Asargew Mihretie ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Mitsuru Tsubo ◽  
...  

Teff is an important crop for smallholder farmers in Ethiopia. Improved crop management practices are needed to increase teff productivity and decrease production costs. Here, we used a split–split plot design to evaluate the impacts of different tillage, sowing, and soil compaction practices, and their combinations, on agronomic performance, weed population, lodging, and cost in teff production at the Aba Gerima watershed in northwestern Ethiopia in 2018–2020. Reduced tillage (RT) improved soil moisture, resulting in increased agronomic performance and decreased production costs compared with conventional tillage (CT); however, the weed population was substantially larger with RT than with CT. Row planting (RP) reduced seed cost and lodging but increased sowing and weeding costs compared with broadcast planting (BP). Plant population and leaf area index were substantially greater with BP than with RP during early-stage growth, but this reversed during late-stage growth. Despite labor costs being significantly greater with (WC) compaction than without (NC), little to no differences were observed in the weed population or in agronomic performance. Partial cost–benefit analysis revealed that RT–RP–WC followed by RT–RP–NC was the most economical treatment combination, suggesting that RT–RP–NC could be a labor-effective means of increasing teff production by smallholder farms in Ethiopia.


2019 ◽  
Vol 11 (9) ◽  
pp. 2571
Author(s):  
Xujing Zhang ◽  
Lichuan Wang ◽  
Yan Chen

Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises’ requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men’s shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.


2013 ◽  
Vol 291-294 ◽  
pp. 1407-1412 ◽  
Author(s):  
Liang Jie Xia ◽  
Dao Zhi Zhao ◽  
Bai Yun Yuan

In low carbon economy, carbon emissions permit has become a kind of resource; in the market economy system, new economic relations between enterprises have appeared, these characteristics make enterprise operation cost structure and profiting pattern changed. The paper reviews the previous literature on carbon footprint, production optimization theory individual enterprise and supply chain operation management with carbon emissions constraints. Then the paper put forward four worth further research directions: Carbon emission cost distribution and scientific measurement in supply chain; supply chain operation based on consumer behavior in Low Carbon Economy Era; optimizing the allocation of carbon emissions permit in supply chain; Dynamic Multi-period operation optimization of carbon efficient supply chain.


Sign in / Sign up

Export Citation Format

Share Document