scholarly journals The Effects of Organic Manure and Chemical Fertilizer Application Levels on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) Seedlings

Author(s):  
Si Ho Han ◽  
Ji Young An ◽  
Hyung-Soon Choi ◽  
Min Seok Cho ◽  
Byung Bae Park
2012 ◽  
Vol 610-613 ◽  
pp. 2968-2973 ◽  
Author(s):  
Ya Jie Zhao ◽  
Xin Chen ◽  
Yi Shi ◽  
Cai Yan Lu ◽  
Bin Huang ◽  
...  

The vegetable utilization rate of phosphorus fertilizer in greenhouse condition was low in the season of fertilizer application, resulting in phosphorus accumulation in the top soil year after year. The risk of phosphorus loss through leaching increased under the circumstance of inappropriate watering management and fertilization. In this study, leaching experiments using columns packed with a greenhouse soil with different soil phosphorus status (low, medium and high levels) were carried out under greenhouse condition to investigate the impact of fertilizer application on phosphorus leaching from greenhouse soil. The fertilization treatments included no fertilizer [CK], organic manure and chemical fertilizer [M+NPK], organic manure [M], chemical fertilizer [NPK]. The vertical migration and leaching loss of soil phosphorus were measured. Results were as follows: (1) total phosphorus (TP) content increased with the extension of leaching time. In the low-level- and medium-level-phosphorus greenhouse soils, TP concentration in the effluent increased with the application of manure; (2) In the high-level-phosphorus greenhouse soil, phosphorus in the effluent from the treatment with the use of fertilizer was the highest TP, with accumulative leaching amount of 2.85 mg in 51 days. The leaching of phosphorus became small after 36 days of leaching experiment. Our study showed that application of manure and chemical fertilizer at proper rates according to soil phosphorus status is beneficial to reduce the leaching loss of phosphorus to the environment.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 111
Author(s):  
Haixia Wu ◽  
Hantao Hao ◽  
Hongzhen Lei ◽  
Yan Ge ◽  
Hengtong Shi ◽  
...  

The excessive use of fertilizer has resulted in serious environmental degradation and a high health cost in China. Understanding the reasons for the overuse of fertilizer is critical to the sustainable development of Chinese agriculture, and large-scale operation is considered as one of the measures to deal with the excessive fertilizer use. Under the premise of fully considering the resource endowment and heterogeneity of large-scale farmers and small-scale farmers in production and management, different production decision-making frameworks were constructed. Based on the 300 large-scale farmers and 480 small-scale farmers in eight provinces of northern China wheat region, we analyzed the optimal fertilizer use amount and its deviation as well as the influencing factors of small-scale and large-scale farmers, then further clarified whether the development of scale management could solve the problem of excessive fertilizer use. The empirical results show that: (1) both small-scale farmers and large-scale farmers deviated from the optimal fertilizer application amount, where the deviation degree of optimal fertilizer application of small-scale farmers is significantly higher than that of large-scale farmers, with a deviation degree of 35.43% and 23.69% for small and large scale farmers, respectively; (2) not all wheat growers in North China had the problem of excessive use of chemical fertilizer, as the optimal level of chemical fertilizer application in Heilongjiang and Inner Mongolia are 346.5 kgha−1 and 335.25 kgha−1, while the actual fertilizer use amount was 337.2 kgha−1 and 324.6 kgha−1, respectively; and (3) the higher the risk aversion level, farmers tended to apply more fertilizer to ensure grain output. Therefore, increasing farm size should be integrated into actions such as improving technological innovation and providing better information transfer to achieve the goal of zero-increase in Chinese fertilizer use.


2021 ◽  
Vol 74 (3) ◽  
pp. 9643-9653
Author(s):  
Ratih Sandrakirana ◽  
Zainal Arifin

Soybean is known for its high protein content, which is the reason why it is widely used as one of the main food sources for humans and animals. In order to optimize soybean growth, farmers tend to add excessive dosage of chemical fertilizer to this crop. Furthermore, a continuous chemical fertilizer application without organic fertilizer addition may cause a rapid depletion of nutrients in the soil. This study aimed to evaluate the effectiveness of organic fertilizer treatment to reduce the amount of urea as chemical fertilizer needed in soybean cultivation. A complete randomized design was conducted using 21 treatments of organic and chemical fertilizer in triplicate with a 4x3 m plot size. Analysis of variance was carried out to compare the means of measurement data and Duncan multiple range test (DMRT 5%) was applied. The treatment 2,000 kg ha-1 compost + 50 kg ha-1 urea (O2K2A1) resulted the highest dry yield in soybean and had significant differences with urea-only treatment. A mixture of chemical and organic fertilizers had no significant result over the yield compared to the use of chemical fertilizer only. Compost application of 1,000-2,000 kg ha-1 with urea 50-100 kg ha-1 (O2K2A1 and O 2K1A2) showed an increase in seed yield of 35-38 % with a profit reaching 333-340 USD ha-1 compared to standard treatment using urea 50 kg ha -1 + SP-36 50 kg ha-1 + 50 KCl kg ha-1 (O0K0A1).


Author(s):  
Yuanzhi Guo ◽  
Jieyong Wang

Chemical fertilizers are important inputs in agricultural production. They not only increase crop yield but also bring many negative effects, such as agricultural non-point source pollution. Therefore, a scientific understanding of the regional differences in chemical fertilizer application and its environmental risks is of significance to promote China’s agricultural development. In this study, we analyzed the spatiotemporal pattern of chemical fertilizer application intensity (CFAI) in China since 2000, evaluated the environmental risks of provincial CFAI, and investigated the internal mechanism behind them. The results showed that the total amount and intensity of chemical fertilizer application in China from 2000 to 2019 presented a trend of increasing first and then decreasing. In 2000 and 2019, provincial CFAI in eastern China was generally higher than that in central and western China, and the environmental risks of provincial CFAI were spatially characterized by “high in the north and low in the south”. Factors such as poor soil conditions, unreasonable farming structure and backward fertilization methods are the main reasons for the continuous increase in the total amount and intensity of chemical fertilizer application, while the construction of ecological civilization and the transformation of society and economy are the main reasons for their decline. Finally, measures such as targeted fertilization, adjusting the use structure of chemical fertilizers, improving fertilization methods and replacing chemical fertilizers with organic fertilizers are proposed to promote the quantity reduction and efficiency increase of chemical fertilizer application in China.


2005 ◽  
Vol 54 (3-4) ◽  
pp. 389-402 ◽  
Author(s):  
Péter Tamás Nagy

In a three-year study carried out at the Debrecen-Pallagi nursery of the University of Debrecen, the nutrient contents, humus content and pH of the soil were determined in integrated and organic apple orchards established on brown forest soil with thin interstratified layers of colloid and sesquioxide accumulation. The organic orchard was only given organic manure (50 t/ha) in spring 2000 and 2002, while the integrated orchard was treated with 250 kg/ha complex NPK fertilizer (16.5-16.5-16.5) every year between 1997 and 2003 after the leaves had fallen. An additional 50 kg/ha N active agent as NH 4 NO 3 was applied every year, while 4 t/ha lime fertilizer (carbonation mud) was provided in autumn 2002 and 25 t/ha organic manure in November 2003. In 2004 no fertilizer was given to either orchard. The available forms of N (NO 3- , NH 4+ , organic N and total N) and P (ortho-, organic and total-PO 43- ) were determined after extraction with 0.01 M CaCl 2 , while the Ca, Mg and microelement (Mn, Cu, Zn) content of the soil was extracted with NH 4 -acetate +EDTA (Lakanen-Erviö extractant). Potassium was measured in both extractants. The results showed that the inorganic, organic and total soluble nitrogen in the soil were significantly higher (P = 0.05) in the integrated orchard than in the organic one. It was found that the quantity and ratio of the organic N fraction was comparable with that of the inorganic N forms. The ortho- phosphate and total P fractions were significantly higher (P = 0.05) in the integrated apple orchard than in the organic orchard, while there was no significant difference in the organic P quantity. The potassium data showed that both the integrated and organic orchards contained a satisfactory amount of adsorbed K in spite of the poor colloid content and high soil acidity. The Ca, Mg, Co and Zn contents of the integrated soils were significantly higher (P = 0.05) than in the organic orchard. For Mn, however, no substantial difference was found between the integrated and organic orchards. With the exception of Mn, the nutrient concentrations reflected the differences in the nutrient management of the integrated and organic apple orchards.


Sign in / Sign up

Export Citation Format

Share Document