Molecular Tools for the Detection and Characterization of Bacterial Infections

2008 ◽  
Vol 39 (10) ◽  
pp. 627-628
2008 ◽  
Vol 39 (7) ◽  
pp. 430-436 ◽  
Author(s):  
Alagarraju Muthukumar ◽  
Nicole L. Zitterkopf ◽  
Deborah Payne

2008 ◽  
Vol 39 (10) ◽  
pp. 627-627
Author(s):  
Elizabeth C. Epp ◽  
Deborah Payne

2021 ◽  
Vol 22 (1) ◽  
pp. 456
Author(s):  
Simone Rentschler ◽  
Lars Kaiser ◽  
Hans-Peter Deigner

Precise and rapid identification and characterization of pathogens and antimicrobial resistance patterns are critical for the adequate treatment of infections, which represent an increasing problem in intensive care medicine. The current situation remains far from satisfactory in terms of turnaround times and overall efficacy. Application of an ineffective antimicrobial agent or the unnecessary use of broad-spectrum antibiotics worsens the patient prognosis and further accelerates the generation of resistant mutants. Here, we provide an overview that includes an evaluation and comparison of existing tools used to diagnose bacterial infections, together with a consideration of the underlying molecular principles and technologies. Special emphasis is placed on emerging developments that may lead to significant improvements in point of care detection and diagnosis of multi-resistant pathogens, and new directions that may be used to guide antibiotic therapy.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sonjoy Kumar Borthakur ◽  
Dilip Kumar Deka ◽  
Saidul Islam ◽  
Dilip Kumar Sarma ◽  
Prabhat Chandra Sarmah

The aim of the present study was to determine the prevalence ofDirofilaria immitisin stray, pet, and working dogs (n=413, 266, and 103, resp.) from Guwahati (Assam) and Aizawl (Mizoram), areas located in two Northeastern States of India. Diagnostic methods applied were microscopy (wet film and Knott’s concentration technique), immunological test (Ag ELISA by SNAP 4Dx ELISA kit), and molecular tools (polymerase chain reaction and sequencing), which evidenced 11.38, 18.03, and 13.93% of positive animals, respectively. No significant differences were observed by area (18.23% versus 17.68%) nor by sex (18.1% versus 17.9%), whereas stray dogs proved more infected than other groups (P<0.05). ELISA test evidenced an overall 22.69% of occult infections, mainly in working dogs (60%), and molecular techniques detectedDirofilaria (Nochtiella) repensin 4 stray dogs from Guwahati. Characterization ofD. immitisisolates for ITS-2 region showed close identity with South Asian isolates.


mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Simon Roux

ABSTRACTMicrobes drive critical ecosystem functions and affect global nutrient cycling along with human health and disease. They do so under strong constraints exerted by viruses, which shape microbial communities’ structure and shift host cell metabolism during infection. While the majority of viruses and their associated impacts remain poorly characterized, a number of mechanisms by which viruses alter microbial cells and ecosystems have already been revealed. Here I outline how a comprehensive host-resolved mapping of viral sequence space will enable a thorough characterization of virus-encoded mechanisms for microbial manipulation. With soon-to-be millions of virus genomes obtained from metagenomes, one of the major challenges resides in the development of methods for high-throughput and high-resolution virus-host pairing, before multi-omics approaches can be leveraged to fully decipher virus-host dynamics in nature. Beyond novel fundamental biological knowledge, these studies will likely provide new molecular tools enabling a precise engineering of microbial cells and communities.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jolanta Krucinska ◽  
Michael N. Lombardo ◽  
Heidi Erlandsen ◽  
Akram Hazeen ◽  
Searle S. Duay ◽  
...  

AbstractMany years ago, the natural secondary metabolite SF2312, produced by the actinomycete Micromonospora, was reported to display broad spectrum antibacterial properties against both Gram-positive and Gram-negative bacteria. Recent studies have revealed that SF2312, a natural phosphonic acid, functions as a potent inhibitor of human enolase. The mechanism of SF2312 inhibition of bacterial enolase and its role in bacterial growth and reproduction, however, have remained elusive. In this work, we detail a structural analysis of E. coli enolase bound to both SF2312 and its oxidized imide-form. Our studies support a model in which SF2312 acts as an analog of a high energy intermediate formed during the catalytic process. Biochemical, biophysical, computational and kinetic characterization of these compounds confirm that altering features characteristic of a putative carbanion (enolate) intermediate significantly reduces the potency of enzyme inhibition. When SF2312 is combined with fosfomycin in the presence of glucose-6 phosphate, significant synergy is observed. This suggests the two agents could be used as a potent combination, targeting distinct cellular mechanism for the treatment of bacterial infections. Together, our studies rationalize the structure-activity relationships for these phosphonates and validate enolase as a promising target for antibiotic discovery.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1478-1491 ◽  
Author(s):  
SAM ALSFORD ◽  
JOHN M. KELLY ◽  
NICOLA BAKER ◽  
DAVID HORN

SUMMARYThe trypanosomes cause two neglected tropical diseases, Chagas disease in the Americas and African trypanosomiasis in sub-Saharan Africa. Over recent years a raft of molecular tools have been developed enabling the genetic dissection of many aspects of trypanosome biology, including the mechanisms underlying resistance to some of the current clinical and veterinary drugs. This has led to the identification and characterization of key resistance determinants, including transporters for the anti-Trypanosoma bruceidrugs, melarsoprol, pentamidine and eflornithine, and the activator of nifurtimox-benznidazole, the anti-Trypanosoma cruzidrugs. More recently, advances in sequencing technology, combined with the development of RNA interference libraries in the clinically relevant bloodstream form ofT. bruceihave led to an exponential increase in the number of proteins known to interact either directly or indirectly with the anti-trypanosomal drugs. In this review, we discuss these findings and the technological developments that are set to further revolutionise our understanding of drug-trypanosome interactions. The new knowledge gained should inform the development of novel interventions against the devastating diseases caused by these parasites.


2003 ◽  
Vol 197 (7) ◽  
pp. 813-822 ◽  
Author(s):  
Holger Kavermann ◽  
Brendan P. Burns ◽  
Katrin Angermüller ◽  
Stefan Odenbreit ◽  
Wolfgang Fischer ◽  
...  

Helicobacter pylori causes one of the most common, chronic bacterial infections and is a primary cause of severe gastric disorders. To unravel the bacterial factors necessary for the process of gastric colonization and pathogenesis, signature tagged mutagenesis (STM) was adapted to H. pylori. The Mongolian gerbil (Meriones unguiculatus) was used as model system to screen a set of 960 STM mutants. This resulted in 47 H. pylori genes, assigned to 9 different functional categories, representing a set of biological functions absolutely essential for gastric colonization, as verified and quantified for many mutants by competition experiments. Identification of previously known colonization factors, such as the urease and motility functions validated this method, but also novel and several hypothetical genes were found. Interestingly, a secreted collagenase, encoded by hp0169, could be identified and functionally verified as a new essential virulence factor for H. pylori stomach colonization. Furthermore, comB4, encoding a putative ATPase being part of a DNA transformation-associated type IV transport system of H. pylori was found to be absolutely essential for colonization, but natural transformation competence was apparently not the essential function. Thus, this first systematic STM application identified a set of previously unknown H. pylori colonization factors and may help to potentiate the development of novel therapies against gastric Helicobacter infections.


Sign in / Sign up

Export Citation Format

Share Document