Food Fraud Monitoring of Commercial Sciaenidae Seafood Product Using DNA Barcode Information

2020 ◽  
Vol 35 (6) ◽  
pp. 574-580
Author(s):  
Eun-Ji Park ◽  
◽  
Ah-Hyeon Jo ◽  
Ju-Yeong Kang ◽  
Han-Cheol Lee ◽  
...  
2021 ◽  
Vol 36 (4) ◽  
pp. 331-341
Author(s):  
Eun-Ji Park ◽  
◽  
Ju-Yeong Kang ◽  
Han-Cheol Lee ◽  
Min-Ji Park ◽  
...  

Author(s):  
Christian Schulze ◽  
Anne-Catrin Geuthner ◽  
Dietrich Mäde

AbstractFood fraud is becoming a prominent topic in the food industry. Thus, valid methods for detecting potential adulterations are necessary to identify instances of food fraud in cereal products, a significant component of human diet. In this work, primer–probe systems for real-time PCR and droplet digital PCR (ddPCR) for the detection of these cereal species: bread wheat (together with spelt), durum wheat, rye and barley for real-time PCR and ddPCR were established, optimized and validated. In addition, it was projected to validate a molecular system for differentiation of bread wheat and spelt; however, attempts for molecular differentiation between common wheat and spelt based on the gene GAG56D failed because of the genetic variability of the molecular target. Primer–probe systems were further developed and optimized on the basis of alignments of DNA sequences, as well as already developed PCR systems. The specificity of each system was demonstrated on 10 (spelt), 11 (durum wheat and rye) and 12 (bread wheat) reference samples. Specificity of the barley system was already proved in previous work. The calculated limits of detection (LOD95%) were between 2.43 and 4.07 single genome copies in real-time PCR. Based on the “three droplet rule”, the LOD95% in ddPCR was calculated to be 9.07–13.26 single genome copies. The systems were tested in mixtures of flours (rye and common wheat) and of semolina (durum and common wheat). The methods proved to be robust with regard to the tested conditions in the ddPCR. The developed primer–probe systems for ddPCR proved to be effective in quantitatively detecting the investigated cereal species rye and common wheat in mixtures by taking into account the haploid genome weight and the degree of milling of a flour. This method can correctly detect proportions of 50%, 60% and 90% wholemeal rye flour in a mixture of wholemeal common wheat flour. Quantitative results depend on the DNA content, on ploidy of cereal species and are also influenced by comminution. Hence, the proportion of less processed rye is overestimated in higher processed bread wheat and adulteration of durum wheat by common wheat by 1–5% resulted in underestimation of common wheat.


Author(s):  
Manuel Gronbach ◽  
Laura Kraußer ◽  
Timo Broese ◽  
Christina Oppermann ◽  
Udo Kragl

AbstractIn this article, we describe the benefits of sublimation for natural product and food chemistry. The direct sublimation of substances from dried plant powders has not received much attention in research in the past, just like the sublimation of substances from dried plant extracts. We used sublimation to study dried sea buckthorn berry powders and dried sea buckthorn berry extracts. The results of the powder sublimations were compared to that of dried chokeberry, wolfberry, and European cornel powder. 52 marker substances of which 27 are specific for sea buckthorn were found in the sea buckthorn powder sublimates using LC/MS. The majority of them are not described in the literature and were obtained by direct sublimation. Accordingly, sublimation can help to identify new plant constituents. Our identification method was validated by the analysis of four commercially available fruit powders. The sea buckthorn powder showed an almost 80% correlation with the determined marker substances, whereas the other fruit powders did not achieve more than 38% correlation. The sublimates of sea buckthorn extracts show additional marker substances compared to the fruit powder sublimate, and we think that both techniques can be used to fight food fraud.


Author(s):  
Ming Li ◽  
Xia Hong ◽  
Xuchun Qiu ◽  
Chuqin Yang ◽  
Yuhao Mao ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Monier M. Abd El-Ghani ◽  
Ashraf S. A. El-Sayed ◽  
Ahmed Moubarak ◽  
Rabab Rashad ◽  
Hala Nosier ◽  
...  

Astragalus L. is one of the largest angiosperm complex genera that belongs to the family Fabaceae, subfamily Papilionoideae or Faboideae under the subtribe Astragalinae of the tribe Galegeae. The current study includes the whole plant morphology, DNA barcode (ITS2), and molecular marker (SCoT). Ten taxa representing four species of Astragalus were collected from different localities in Egypt during the period from February 2018 to May 2019. Morphologically, identification and classification of collected Astragalus plants occurred by utilizing the light microscope, regarding the taxonomic revisions of the reference collected Astragalus specimens in other Egyptian Herbaria. For molecular validation, ten SCoT primers were used in this study, producing a unique banding pattern to differentiate between ten samples of Astragalus taxa which generated 212 DNA fragments with an average of 12.2 bands per 10 Astragalus samples, with 8 to 37 fragments per primer. The 212 fragments amplified were distributed as 2 monomorphic bands, 27 polymorphic without unique bands, 183 unique bands (210 Polymorphic with unique bands), and ITS2 gene sequence was showed as the optimal barcode for identifying Astragalus L. using BLAST searched on NCBI database, and afterward, analyzing the chromatogram for ITS region, 10 samples have been identified as two samples representing A. hauarensis, four samples representing A. sieberi, three samples representing A. spinosus and one sample representing A. vogelii. Based on the ITS barcode, A. hauarensis RMG1, A. hauarensis RMG2, A. sieberi RMG1, A. sieberi RMG2, A. sieberi RMG3, A. sieberi RMG4, A. spinosus RMG1, A. spinosus RMG2, A. spinosus RMG3, A. vogelii RMG were deposited into GenBank with accession # MT367587.1, MT367591.1, MT367593.1, MT367585.1, MT367586.1, MT367588.1, MT160347.1, MT367590.1, MT367589.1, MT367592.1, respectively. These results indicated the efficiency of SCoT markers and ITS2 region in identifying and determining genetic relationships between Astragalus species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chayapol Tungphatthong ◽  
Santhosh Kumar J. Urumarudappa ◽  
Supita Awachai ◽  
Thongchai Sooksawate ◽  
Suchada Sukrong

AbstractMitragyna speciosa (Korth.) Havil. [MS], or “kratom” in Thai, is the only narcotic species among the four species of Mitragyna in Thailand, which also include Mitragyna diversifolia (Wall. ex G. Don) Havil. [MD], Mitragyna hirsuta Havil. [MH], and Mitragyna rotundifolia (Roxb.) O. Kuntze [MR]. M. speciosa is a tropical tree belonging to the Rubiaceae family and has been prohibited by law in Thailand. However, it has been extensively covered in national and international news, as its abuse has become more popular. M. speciosa is a narcotic plant and has been used as an opium substitute and traditionally used for the treatment of chronic pain and various illnesses. Due to morphological disparities in the genus, the identification of plants in various forms, including fresh leaves, dried leaf powder, and finished products, is difficult. In this study, DNA barcoding combined with high-resolution melting (Bar-HRM) analysis was performed to differentiate M. speciosa from allied Mitragyna and to assess the capability of Bar-HRM assays to identify M. speciosa in suspected kratom or M. speciosa-containing samples. Bar-HRM analysis of PCR amplicons was based on the ITS2, rbcL, trnH-psbA, and matK DNA barcode regions. The melting profiles of ITS2 amplicons were clearly distinct, which enabled the authentication and differentiation of Mitragyna species from allied species. This study reveals that DNA barcoding coupled with HRM is an efficient tool with which to identify M. speciosa and M. speciosa-containing samples and ensure the safety and quality of traditional Thai herbal medicines.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 281
Author(s):  
Nicolas Hubert ◽  
Elodie Pepey ◽  
Jean-Michel Mortillaro ◽  
Dirk Steinke ◽  
Diana Edithe Andria-Mananjara ◽  
...  

The fast development of aquaculture over the past decades has made it the main source of fish protein and led to its integration into the global food system. Mostly originating from inland production systems, aquaculture has emerged as strategy to decrease malnutrition in low-income countries. The Nile tilapia (Oreochromis niloticus) was introduced to Madagascar in the 1950s, and is now produced nationally at various scales. Aquaculture mostly relies on fry harvested from wild populations and grow-out in ponds for decades. It has recently been diversified by the introduction of several fast-growing strains. Little is known how local genetic diversity compares to recently introduced strains, although high and comparable levels of genetic diversity have previously been observed for both wild populations and local stocks. Our study compares DNA barcode genetic diversity among eight farms and several strains belonging to three species sampled. DNA-based lineage delimitation methods were applied and resulted in the detection of six well differentiated and highly divergent lineages. A comparison of DNA barcode records to sequences on the Barcode of Life Data System (BOLD) helped to trace the origin of several of them. Both haplotype and nucleotide diversity indices highlight high levels of mitochondrial genetic diversity, with several local strains displaying higher diversity than recently introduced strains. This allows for multiple options to maintain high levels of genetic diversity in broodstock and provides more options for selective breeding programs.


Sign in / Sign up

Export Citation Format

Share Document