scholarly journals Analysis of earthquakes recordings of tidal gravimeters in the period range of 10-1000 s

2021 ◽  
pp. 79-92
Author(s):  
Kamila Karkowska
Keyword(s):  
2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


1977 ◽  
Vol 67 (3) ◽  
pp. 735-750
Author(s):  
Kin-Yip Chun ◽  
Toshikatsu Yoshii

abstract Group velocities of fundamental-mode Rayleigh and Love waves are analyzed to construct a crustal structure of the Tibetan Plateau. A moving window analysis is employed to compute group velocities in a wide period range of 7 to 100 sec for 17 individual paths. The crustal models derived from these dispersion data indicate that under the Tibetan Plateau the total crustal thickness is about 70 km and that the crustal velocities are generally low. The low velocities are most probably caused by high temperatures. A low-velocity zone located at an intermediate depth within the crust appears to be strongly demanded by the observed dispersion data. The main features of the proposed crustal structure will place stringent constraints on future tectonic models of the Tibetan Plateau which is generally regarded as a region of active deformation due to the continent-continent collision between India and Asia.


1977 ◽  
Vol 67 (3) ◽  
pp. 751-769
Author(s):  
Nazieh K. Yacoub ◽  
Brian J. Mitchell

abstract Surface waves generated by six earthquakes and two nuclear explosions are used to study the attenuation coefficients of the fundamental Rayleigh mode across Eurasia. Rayleigh-wave amplitude data yield average attenuation coefficients at periods between 4 and 50 sec. The data exhibit relatively large standard deviations and in some cases the average attenuation coefficients take on negative values which may be due to regional variations of the attenuative properties of the crust, lateral refraction, multipathing and scattering. A method has been developed to investigate the regional variation in the attenuative properties of the Eurasian crust and its effect on surface-wave amplitude data, employing the evaluated average attenuation coefficients for the fundamental Rayleigh mode. For this investigation, Eurasia is divided into two regions, one considered to be relatively stable, and the other considered to be tectonic in nature. This regionalization shows that the tectonic regions exhibit higher attenuation than the stable regions in the period range below about 20 sec, whereas in the period range above about 20 sec, no clear difference can be observed for the two regions. Although the effects of lateral refraction and multipathing may still significantly affect the observations, the regionalization lowers the standard deviations considerably and eliminates the negative values which were obtained in the unregionalized determinations.


2021 ◽  
Author(s):  
Elisabeth Blanc ◽  
Patrick Hupe ◽  
Bernd Kaifler ◽  
Natalie Kaifler ◽  
Alexis Le Pichon ◽  
...  

<p>The uncertainties in the infrasound technology arise from the middle atmospheric disturbances, which are partly underrepresented in the atmospheric models such as in the European Centre for Medium-Range Weather Forecasts (ECMWF) products used for infrasound propagation simulations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, multi-instrument observations are performed to provide new data sets for model improvement and future assimilations. In an unexpected way, new observations using the autonomous CORAL lidar showed significant differences between ECMWF analysis fields and observations in Argentina in the period range between 0.1 and 10 days. The model underestimates the wave activity, especially in the summer. During the same season, the infrasound bulletins of the IS02 station in Argentina indicate the presence of two prevailing directions of the detections, which are not reflected by the simulations. Observations at the Haute Provence Observatory (OHP) are used for comparison in different geophysical conditions. The origin of the observed anomalies are discussed in term of planetary waves effect on the infrasound propagation.</p>


1981 ◽  
Vol 71 (2) ◽  
pp. 491-505
Author(s):  
Katsuhiko Ishida

abstract The methodology to estimate the strong motion Fourier amplitude spectra in a short-period range (T ≦ 1 to 2 sec) on a bedrock level is discussed in this paper. The basic idea is that the synthetic strong motion Fourier spectrum F˜A(ω) calculated from smoothed rupture velocity model (Savage, 1972) is approximately similar to that of low-pass-filtered strong earthquake ground motion at a site in a period range T ≧ 1 to 2 sec: F˜A(ω)=B˜(ω)·A(ω). B˜(ω) is an observed Fourier spectrum on a bedrock level and A(ω) is a low-pass filter. As a low-pass filter, the following relation, A ( T ) = · a · T n a T n + 1 , ( T = 2 π / ω ) , is assumed. In order to estimate the characteristic coefficients {n} and {a}, the Tokachi-Oki earthquake (1968), the Parkfield earthquake (1966), and the Matsushiro earthquake swarm (1966) were analyzed. The results obtained indicate that: (1) the coefficient {n} is nearly two for three earthquakes, and {a} is nearly one for the Tokachi-Oki earthquake, eight for the Parkfield earthquake, and four for the Matsushiro earthquake swarm, respectively; (2) the coefficient {a} is related with stress drop Δσ as (a = 0.07.Δσ). Using this relationship between {a} and Δσ, the coefficients {a} of past large earthquakes were estimated. The Fourier amplitude spectra on a bedrock level are also estimated using an inverse filtering method of A ( T ) = a T 2 a T 2 + 1 .


1989 ◽  
Vol 79 (4) ◽  
pp. 1177-1193
Author(s):  
Jacques Talandier ◽  
Emile A. Okal

Abstract We have developed a new magnitude scale, Mm, based on the measurement of mantle Rayleigh-wave energy in the 50 to 300 sec period range, and directly related to the seismic moment through Mm = log10M0 − 20. Measurements are taken on the first passage of Rayleigh waves, recorded on-scale on broadband instruments with adequate dynamical range. This allows estimation of the moment of an event within minutes of the arrival of the Rayleigh wave, and with a standard deviation of ±0.2 magnitude units. In turn, the knowledge of the seismic moment allows computation of an estimate of the high-seas amplitude of a range of expectable tsunami heights. The latter, combined with complementary data from T-wave duration and historical references, have been integrated into an automated procedure of tsunami warning by the Centre Polynésien de Prévention des Tsunamis (CPPT), in Papeete, Tahiti.


1975 ◽  
Vol 65 (5) ◽  
pp. 1051-1057 ◽  
Author(s):  
W. P. Chen ◽  
P. Molnar

Abstract Well-dispersed Rayleigh waves within the period range of 4 to 11 sec are observed at New Delhi (NDI) and Shillong (SHL), India, for seven earthquakes near and in the Tibetan Plateau from 1963 to 1971. The dispersion curves and the simply dispersed wave forms suggest a prominent overlying wave guide, probably sediments, in the Tibetan area. The thickness of such sediments is most likely between 2.5 and 7.0 km. The simple wave trains, without much distortion due to multipathing, are consistent with a relatively inert, recent tectonism in Tibet.


1967 ◽  
Vol 57 (1) ◽  
pp. 55-81
Author(s):  
E. J. Douze

abstract This report consists of a summary of the studies conducted on the subject of short-period (6.0-0.3 sec period) noise over a period of approximately three years. Information from deep-hole and surface arrays was used in an attempt to determine the types of waves of which the noise is composed. The theoretical behavior of higher-mode Rayleigh waves and of body waves as measured by surface and deep-hole arrays is described. Both surface and body waves are shown to exist in the noise. Surface waves generally predominate at the longer periods (of the period range discussed) while body waves appear at the shorter periods at quiet sites. Not all the data could be interpreted to define the wave types present.


1964 ◽  
Vol 54 (6A) ◽  
pp. 1915-1925 ◽  
Author(s):  
I. Lehmann

abstract The European records from distances 36°-50° of the deep Hindu Kush earthquake of March 4, 1949 were studied. The many clearly recorded deep-focus reflections lend to the records a characteristic appearance which is repeated in many other shocks from the same focal region. The ratios of the amplitudes of these phases vary somewhat from one shock to another. In the shock here considered sP and sPP are exceptionally large at most stations; in the Italian stations they are not so large, while pP is a clear phase. pP is not very well defined at most other stations. Most of the 1949 records were from the old type long-period instruments having their highest magnification for periods from about 5 sec to 12 sec. Present day instruments of quite short or of very long proper period while admirable for many purposes do not record waves in this period range very well and therefore do not produce a satisfactory picture of the forerunners of earthquakes. The difference between the records obtained on different instruments is illustrated. It is shown in examples that the amplitude ratio PP:P may differ strongly at the same epicentral distance and also that pP may vary greatly with azimuth. The deficiency of station readings is noted. Travel times and their residuals are tabulated and travel times plotted versus epicentral distances.


2018 ◽  
Vol 616 ◽  
pp. A80 ◽  
Author(s):  
Julieta P. Sánchez Arias ◽  
Alejandra D. Romero ◽  
Alejandro H. Córsico ◽  
Ingrid Pelisoli ◽  
Victoria Antoci ◽  
...  

Context. Pulsating extremely low-mass pre-white dwarf stars (pre-ELMV), with masses between ~0.15 M⊙ and ~0.30 M⊙, constitute a new class of variable stars showing g- and possibly p-mode pulsations with periods between 320 and 6000 s (frequencies between 14.4 and 270 c/d), driven by the κ mechanism operating in the second He ionization zone. On the other hand, main sequence δ Scuti stars, with masses between 1.2 and 2.5 M⊙, pulsate in low-order g and p modes with periods in the range [700–28 800] s (frequencies in the range [3–123] c/d), driven by the κ mechanism operating in the He II ionization zone and the turbulent pressure acting in the HI ionization layer. Interestingly enough, the instability strips of pre-ELM white dwarf and δ Scuti stars nearly overlap in the Teff vs. log g diagram, leading to a degeneracy when spectroscopy is the only tool to classify the stars and pulsation periods only are considered. Aims. Pre-ELM white dwarf and δ Scuti stars are in very different stages of evolution and therefore their internal structure is very distinct. This is mirrored in their pulsational behavior, thus employing asteroseismology should allow us to distinguish between these groups of stars despite their similar atmospheric parameters. Methods. We have employed adiabatic and non-adiabatic pulsation spectra for models of pre-ELM white dwarfs and δ Scuti stars, and compare their pulsation periods, period spacings, and rates of period change. Results. Unsurprisingly, we found substantial differences in the period spacing of δ Scuti and pre-ELM white dwarf models. Even when the same period range is observed in both classes of pulsating stars, the modes have distinctive signature in the period spacing and period difference values. For instance, the mean period difference of p-modes of consecutive radial orders for δ Scuti model are at least four times longer than the mean period spacing for the pre-ELM white dwarf model in the period range [2000–4600] s (frequency range [18.78–43.6] c/d). In addition, the rate of period change is two orders of magnitudes larger for the pre-ELM white dwarfs compared to δ Scuti stars. In addition, we also report the discovery of a new variable star, SDSSJ075738.94+144827.50, located in the region of the Teff versus log g diagram where these two kind of stars coexist. Conclusions.The characteristic spacing between modes of consecutive radial orders (p as well as g modes) and the large differences found in the rates of period change for δ Scuti and pre-ELM white dwarf stars suggest that asteroseismology can be employed to discriminate between these two groups of variable stars. Furthermore, we found that SDSSJ075738.94+144827.50 exhibits a period difference between p modes characteristic of a δ Sct star, assuming consecutive radial order for the observed periods.


Sign in / Sign up

Export Citation Format

Share Document