Synthetic biodegradable elastomers for drug delivery and tissue engineering

2010 ◽  
Vol 83 (1) ◽  
pp. 9-24 ◽  
Author(s):  
Christopher J. Bettinger

Synthetic biodegradable elastomers are an emerging class of materials with many potential clinical applications including drug delivery and tissue engineering. Biodegradable elastomers offer advantages of structure diversity, tunable properties, and a wide range of processing capabilities. This review highlights some recent developments in various aspects of biodegradable materials synthesis, characterization, and processing with a specific focus on structure-processing–property relationships. Biodegradation mechanisms and issues regarding tissue biocompatibility of these materials are discussed. Applications of synthetic biodegradable elastomers, including use as a materials platform for controlled release systems, tissue engineering scaffolds, and engineered substrates for in vitro cell–biomaterials interactions will also be presented.

2021 ◽  
Vol 8 (6) ◽  
pp. 13-21
Author(s):  
Odia Osemwegie ◽  
Lihua Lou ◽  
Ernest Smith ◽  
Seshadri Ramkumar

Nanofiber substrates have been used for various biomedical applications, including tissue regeneration, drug delivery, and in-vitro cell culture. However, despite the high volume of studies in this field, current clinical applications remain minimal. Innovations for their applications continuously generate exciting prospects. In this review, we discuss some of these novel innovations and identify critical factors to consider before their adoption for biomedical applications.


2020 ◽  
Author(s):  
Andrii Shynkarenko ◽  
Dekel Azulay ◽  
Sarka Hauzerova ◽  
Andrea Klapstova ◽  
Michal Moucka ◽  
...  

Abstract Background: Nanofibrous materials currently find a wide range of medical and bioengineering applications including tissue-engineering scaffolds, sutures, and wound dressings. Recently, production of nanofibrous materials via Electrospinning has played a dominant role in this area. Here we introduce an alternative method, which we call the drawing method, which allows us to produce individual micro and nanofibers and to position them precisely into a two-dimensional network. Results: The creation of such nano or micro fibrous networks is enabled thanks to a special arm-like robotic manipulator that we have designed, including its control system software. In this work we produced and tested microfibrous scaffolds of precise geometry made of two different biodegradable polymers: Polycaprolactone and Polylactide – Polycaprolactone copolymer. The microfibrous networks produced thereby were analyzed using a scanning electronic microscope and tested in vitro for cell adhesion and proliferation. The crystallinity of the resulting manufactured polymeric structures was evaluated using differential scanning calorimetry. Conclusions: The mechanical drawing of individual microfibers presented in this article is a promising method to produce precisely oriented nano and microfibrous structures for technical as well as bioengineering applications. Our results indicate that the mechanical drawing of microfibers expands the possibilities for the preparation of tissue engineering scaffolds. Therefore, we believe that the range of applications of mechanical fiber drawing may soon expand.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


2006 ◽  
Vol 7 (6) ◽  
pp. 1751-1757 ◽  
Author(s):  
Forrest A. Landis ◽  
Jean S. Stephens ◽  
James A. Cooper ◽  
Marcus T. Cicerone ◽  
Sheng Lin-Gibson

2018 ◽  
Vol 53 ◽  
pp. 22-36 ◽  
Author(s):  
Habibollah Faraji ◽  
Reza Nedaeinia ◽  
Esmaeil Nourmohammadi ◽  
Bizan Malaekeh-Nikouei ◽  
Hamid Reza Sadeghnia ◽  
...  

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


Sign in / Sign up

Export Citation Format

Share Document