Radio frequency expanding plasmas at low, intermediate, and atmospheric pressure and their applications

2008 ◽  
Vol 80 (9) ◽  
pp. 1919-1930 ◽  
Author(s):  
Gheorghe Dinescu ◽  
Eusebiu R. Ionita

We report on the operation and characteristics of radio frequency (RF) plasma beam sources based on the expansion of the discharge outside of limited spaces with small interelectrode gaps. The appropriate electrode configuration, combined with high mass flow values and appropriate power levels, leads to small- or large-size plasma jets, working stably at low, intermediate, and atmospheric pressures. The sources are promising tools for a wide range of applications in thin film deposition, surface modification, and cleaning, including the case of temperature-sensitive substrates.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1296
Author(s):  
Iryna Kuchakova ◽  
Maria Daniela Ionita ◽  
Eusebiu-Rosini Ionita ◽  
Andrada Lazea-Stoyanova ◽  
Simona Brajnicov ◽  
...  

Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.


Plasma ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 145-171
Author(s):  
Kristaq Gazeli ◽  
Guillaume Lombardi ◽  
Xavier Aubert ◽  
Corinne Y. Duluard ◽  
Swaminathan Prasanna ◽  
...  

Recent developments in plasma science and technology have opened new areas of research both for fundamental purposes (e.g., description of key physical phenomena involved in laboratory plasmas) and novel applications (material synthesis, microelectronics, thin film deposition, biomedicine, environment, flow control, to name a few). With the increasing availability of advanced optical diagnostics (fast framing imaging, gas flow visualization, emission/absorption spectroscopy, etc.), a better understanding of the physicochemical processes taking place in different electrical discharges has been achieved. In this direction, the implementation of fast (ns) and ultrafast (ps and fs) lasers has been essential for the precise determination of the electron density and temperature, the axial and radial gradients of electric fields, the gas temperature, and the absolute density of ground-state reactive atoms and molecules in non-equilibrium plasmas. For those species, the use of laser-based spectroscopy has led to their in situ quantification with high temporal and spatial resolution, with excellent sensitivity. The present review is dedicated to the advances of two-photon absorption laser induced fluorescence (TALIF) techniques for the measurement of reactive species densities (particularly atoms such as N, H and O) in a wide range of pressures in plasmas and flames. The requirements for the appropriate implementation of TALIF techniques as well as their fundamental principles are presented based on representative published works. The limitations on the density determination imposed by different factors are also discussed. These may refer to the increasing pressure of the probed medium (leading to a significant collisional quenching of excited states), and other issues originating in the high instantaneous power density of the lasers used (such as photodissociation, amplified stimulated emission, and photoionization, resulting to the saturation of the optical transition of interest).


Solar Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 575-585
Author(s):  
Jicheng Zhou ◽  
Jing Huang ◽  
Jia Liao ◽  
Yan Guo ◽  
Zengchao Zhao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5609
Author(s):  
Raluca Maria Aileni ◽  
Laura Chiriac ◽  
Doina Toma ◽  
Irina Sandulache

This paper presents a study concerning the preliminary treatments in radiofrequency (RF)oxygen (O2) plasma used to obtain a hydrophilic effect on raw cotton fabrics followed by electroconductive thin film deposition to obtain electroconductive textile surfaces. In addition, this study presents a multivariate correlation analysis of experimental parameters. The treatment using RF plasma O2 aimed to increase the hydrophilic character of the raw fabric and adherence of paste-based polymeric on polyvinyl alcohol (PVA) matrix and nickel (Ni), silver (Ag) or copper (Cu) microparticles. The purpose of the research was to develop electroconductive textiles for flexible electrodes, smart materials using a clean technology such as radiofrequency (RF) plasma O2 to obtain a hydrophilic surface with zero wastewater and reduced chemicals and carbon footprint. To achieve the foreseen results, we used advanced functionalization technologies such as RF plasma O2, followed by scraping a thin film of conductive paste-based Ni, Ag or Cu microparticles, and multivariate correlation methods to observe the dependence between parameters involved (dependent and independent variables). Overall, the fabrics treated in plasma with O2 using a kHz or MHz generator and power 100–200 W present an excellent hydrophilic character obtained in 3 min. After RF O2 plasma functionalization, a thin film based on polymeric matrix PVA and Ni microparticles have been deposited on the fabric surface to obtain electroconductive materials.


2012 ◽  
Vol 9 (11-12) ◽  
pp. 1041-1073 ◽  
Author(s):  
Francoise Massines ◽  
Christian Sarra-Bournet ◽  
Fiorenza Fanelli ◽  
Nicolas Naudé ◽  
Nicolas Gherardi

1989 ◽  
Vol 162 ◽  
Author(s):  
G. A. J. Amaratunga ◽  
W. I. Milne ◽  
A. Putnis ◽  
K. K. Chan ◽  
K. J. Clay ◽  
...  

ABSTRACTThin C films deposited from a CH4/Ar plasma on Si substrates kept at 20C are shown to be semiconducting. The semiconducting properties are associated with the poly-crystalline diamond grains present within the films. Diode type I-V characteristics observed from AVC/Si verticle structures are explained by the action of a C-Si heterojunction. A band gap of 2eV, a resistivity of 106Ω.cm and an electrical breakdown strength of 5.106 V/cm are estimated for the C.


Sign in / Sign up

Export Citation Format

Share Document