Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process

2006 ◽  
Vol 45 (21) ◽  
pp. 5154 ◽  
Author(s):  
Yi Yang ◽  
Ke-Yuan Qian ◽  
Yi Luo
Author(s):  
Oliver Borm ◽  
Balint Balassa ◽  
Sebastian Barthmes ◽  
Julius Fellerhoff ◽  
Andreas Ku¨hrmann ◽  
...  

This paper demonstrates an aerodynamic design process for turbomachines for compressible flows, using exclusively open source software tools. Some relevant software already existed and few additional components were required, which have been developed mainly by students and are available at ftp.lfa.mw.tum.de. The geometry of turbomachine blades is described with a newly developed NURBS based blade designer. One-dimensional preliminary analysis is done with OpenOffice.org Calc and an extended mean line program, where loss models are already included. For two-dimensional through-flow computations a compressible streamline curvature method was implemented. Two-dimensional blade-to-blade and three-dimensional simulations are performed with the CFD toolbox OpenFOAM. The two- and three-dimensional results are visualized and analyzed using the open source postprocessing tool ParaView. The presented tools are regularly used in student projects. A generic one stage axial compressor was created with the workflow as a showcase in order to demonstrate the capabilities of the open source software tools.


Author(s):  
Daniel W. Carroll ◽  
Spencer P. Magleby ◽  
Larry L. Howell ◽  
Robert H. Todd ◽  
Craig P. Lusk

Most simplified manufacturing processes generally result in two-dimensional features. However, most products are three-dimensional. Devices that could be manufactured through simplified manufacturing processes, but function in a three-dimensional space, would be highly desirable — especially if they require little assembly. Compliant ortho-planar metamorphic mechanisms (COPMMS) can be fabricated through simplified manufacturing processes, and then metamorphically transformed into a new configuration where they are no longer bound by the limitations of ortho-planar behavior. The main contributions of this paper are the suggestion of COPMM definitions, an investigation into the morphing process, and the description of a COPMM design process. This work also contributes a case study in designing COPMMs to meet particular design objectives.


2014 ◽  
Vol 602-605 ◽  
pp. 3235-3238
Author(s):  
Bai Chuan Cai ◽  
Rong Fang Mei ◽  
Jian Guo Mei ◽  
Bo Yang

During animation design process, when the overlap of animation graphics is overtopping, inaccurate three-dimensional feature points appear in the established model, which resulting in low fidelity of model. For this drawbacks, a three-dimensional reality animation design modeling based on an optimization algorithm of animation modeling fidelity is proposed. Triangle refinement method is utilized to refine feature points distributed disorderly in the three-dimensional animation model, so as to obtain a three-dimensional animation composed of triangles, according to the method of calculating the intersection of intersecting triangles, optimal triangles can be achieved, i.e. the new three-dimensional coordinate points are acquired. Afterwards, two-dimensional coordinate calculation is processed for the new added points to get the exact coordinates of the point in the three-dimensional animation model, eventually obtain a three-dimensional animation model with high degree of fidelity.


2021 ◽  
Author(s):  
Marc Aurel Schnabel ◽  
B Haslop

Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.


2018 ◽  
Vol 16 (3) ◽  
pp. 183-198
Author(s):  
Marc Aurel Schnabel ◽  
Blaire Haslop

Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.


Author(s):  
Tom Schweiger ◽  
Richard M. Underhill ◽  
Duncan W. Livingston

This paper presents a technique for optimising the performance of a diffuser in an industrial gas turbine using validated CFD modelling. The combustor module of the Rolls Royce RB211-DLE industrial engine was modelled from diffuser inlet to combustor inlet, using a hybrid meshing procedure. A CFD model of the current RB211-DLE diffuser and casing was validated against perspex single sector rig data, including pressure probe measurements, oil dot flow tests and a sensitivity analysis. A three-dimensional design process was then undertaken to determine how the shape of the diffuser affects the loss through the system, and hence which type of diffuser would provide the best opportunity for maximising the engine performance. The best two general diffuser designs were optimised using an iterative two-dimensional design process. The performance of these optimised designs was then confirmed by full three-dimensional modelling. This work suggests that a significant improvement in sfc (based on a constant turbine temperature) would be achieved if the optimum diffuser design is installed into the RB211-DLE engine.


2021 ◽  
Author(s):  
Marc Aurel Schnabel ◽  
B Haslop

Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Sign in / Sign up

Export Citation Format

Share Document