Composite gyroscope with high sensitivity in the low-velocity region and no dead zone

2020 ◽  
Vol 37 (2) ◽  
pp. 540
Author(s):  
Weiguo Jiang ◽  
Yundong Zhang ◽  
Jinfang Wang ◽  
Kai Ma ◽  
Fuxing Zhu ◽  
...  
Author(s):  
Kezhou Song ◽  
Ari Jokilaakso

AbstractThe emerging bottom blown copper smelting (SKS) technology has attracted growing interest since it came into production. To further reveal the agitation behavior inside the bath and optimize the variable parameters, CFD simulation was conducted on a scaled down SKS furnace model with different tuyere arrangements. The Multi-Fluid VOF model was used for the first time in SKS furnace simulation and the simulated results show good agreement with an experimental water model reported in the literature, in terms of plume shape and surface wave. It was found that a low velocity region would appear on the opposite side of the bubble plume and persisted for a long time. To enhance the agitation in the low velocity region and reduce the dead zone area, an arrangement with tuyeres installed at each side of the furnace was recommended. Results suggested that a smaller tuyere angle difference would help to strengthen the agitation in the system. However, further investigation indicated that the difference in tuyere angle between two rows of tuyeres should be limited within a certain range to balance the requirements of higher agitation efficiency and longer lining refractory lifespan.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 11
Author(s):  
Mohamad Dzulhelmy bin Amari ◽  
Muhamad Saifuddin b. Abdull Shukor ◽  
Sukarnur Che Abdullah

Automated reaction from the system is most important in fulfilling the requirement of the intelligent control system. Hence, many related studies regarding in developing the hardware of the system such as high sensitivity of the airflow sensor in detecting the changes either in user or the environment. The effect of the fast detection of the sensor through the high sensitivity of the airflow sensor have enable the system to identify and analyze the behavior of the user in higher accuracy compared to conventional system. Within the scope of airflow sensitivity, separation between two parts in the airflow sensor in altering the velocity impact have been inquired in purpose, while a few investigations in relations to determine the pressure contour of the main parts have been explored by application of using Computational Fluid Dynamics (CFD. This simulation is performed in the ANSYS program software. Thus, this study consequently intends to be focus on detection the high sensitivity of the airflow movement by distinguishing the high and low velocity impact. The optimization the airflow sensor in this study based on design parameter also done in order to design and develop a highly sensitive airflow sensor   


2020 ◽  
Vol 497 (2) ◽  
pp. 1475-1487
Author(s):  
G Subebekova ◽  
S Zharikov ◽  
G Tovmassian ◽  
V Neustroev ◽  
M Wolf ◽  
...  

ABSTRACT We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc’s inner part. However, we found that the Hα emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component’s source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems – a point we discuss.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1738-1757 ◽  
Author(s):  
Don W. Vasco ◽  
John E. Peterson ◽  
Ernest L. Majer

It is possible to efficiently use traveltime and amplitude information to infer variations in velocity and Q. With little additional computation, terms accounting for source radiation pattern and receiver coupling may be included in the inversion. The methodology is based upon a perturbation approach to paraxial ray theory. The perturbation approach linearizes the relationship between velocity deviations and traveltime and amplitude anomalies. Using the technique, we infer the velocity and attenuation structure at a fractured granitic site near Raymond, California. A set of four well pairs are examined and each is found to contain two zones of strong attenuation. The velocity variations contain an upper low velocity region corresponding to the uppermost attenuating zone. The location of these zones agrees with independent well‐log and geophysical data. The velocity and attenuation anomalies appear to coincide with extensively fractured sections of the borehole and may indicate fracture zones rather than individual fractures.


2003 ◽  
Vol 30 (2) ◽  
Author(s):  
S. Bazin ◽  
A. J. Harding ◽  
G. M. Kent ◽  
J. A. Orcutt ◽  
S. C. Singh ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 2487-2491
Author(s):  
Cun Cheng Shi ◽  
Xin Fan ◽  
Sheng Guo Zou ◽  
Meng Shen Li

With the development of the earth penetration weapon, the research interest has gradually changed from low velocity impact to high velocity or hypervelocity penetration. This paper reviews the the theoretic research status on velocity region ascertaining of penetration, the target material properties near penetration cavity and mass abrasion of projectiles in high velocity penetration, and makes suggestions on the future research.


1989 ◽  
Vol 111 (4) ◽  
pp. 363-368 ◽  
Author(s):  
A. Kjo¨rk ◽  
L. Lo¨fdahl

Measurements of the three mean velocity components and five of the Reynolds stresses have been carried out in the blade passage of a centrifugal fan impeller. The impeller was of ordinary design, with nine backward curved blades, and all measurements were carried out at the design flow rate. The mean velocity measurements show that the flow can be characterized as an attached flow with almost linearly distributed velocity profiles. However, in a region near the suction side close to the shroud a low velocity region is created. From the turbulence measurements it can be concluded that relatively low values of the turbulent stresses are predominating in the center region of the channel. Closer to the walls higher values of the normal as well as shear stresses are noted.


2002 ◽  
Vol 12 (11) ◽  
pp. 2547-2555 ◽  
Author(s):  
VADIM N. KURDYUMOV ◽  
AMABLE LIÑÁN

The flashback or propagation of premixed flames against the flow of a reacting mixture, along the low velocity region near a cold wall, is investigated numerically. The analysis, carried out using the constant density approximation for an Arrhenius overall reaction, accounts for the effects of the Lewis number of the limiting reactant. Flame front propagation and flashback are only possible for values of the near wall velocity gradient below a critical value. The flame propagation becomes chaotic for small values of the Lewis number.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 617 ◽  
Author(s):  
Yanzhu Hu ◽  
Zhen Meng ◽  
Mohammadmasoud Zabihi ◽  
Yuanyuan Shan ◽  
Siyi Fu ◽  
...  

The last years have witnessed the wide application of Distributed Acoustic Sensor (DAS) systems in several fields, such as submarine cable monitoring, seismic wave detection, structural health monitoring, etc. Due to their distributed measurement ability and high sensitivity, DAS systems can be employed as a promising tool for the phase sensitive optical time domain reflectometry (Φ-OTDR). However, it is also well-known that the traditional Φ-OTDR system suffers from Rayleigh backscattering (RBS) fading effects, which induce dead zones in the measurement results. Worse still, in practice it is difficult to achieve the optimum matching between spatial resolution (SR) and signal to noise ratio (SNR). Further, the overall frequency response range (FRR) of the traditional Φ-OTDR is commonly limited by the length of the fiber in order to prevent RBS signals from overlapping with each other. Additionally, it is usually difficult to reconstruct high frequency vibration signals accurately for long range monitoring. Aiming at solving these problems, we introduce frequency division multiplexing (FDM) that makes it easier to improve the system performance with less system structure changes. We propose several novel Φ-OTDR schemes based on Frequency Division Multiplexing (FDM) technology to solve the above problems. Experimental results showed that the distortion induced by fading effects could be suppressed to 1.26%; when the SR of Φ-OTDR is consistent with the length of the vibration region, the SNR of the sensing system is improved by 3 dB compared to the average SNR with different SRs; vibration frequencies up to 440 kHz have been detected along 330 m artificial microstructures. Thus, the proposed sensing system offers a promising solution for the performance enhancement of DAS systems that could achieve high SNR, broadband FRR and dead zone-free measurements at the same time.


Sign in / Sign up

Export Citation Format

Share Document