Energy-efficient active photonics in a zero-change, state-of-the-art CMOS process

Author(s):  
M. T. Wade ◽  
J. M. Shainline ◽  
J. S. Orcutt ◽  
C. Sun ◽  
R. Kumar ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jacob Postman ◽  
Patrick Chiang

Scaling CMOS process technology continues to enable increased levels of system integration, leading to on-chip communication demands beyond what traditional digital signaling techniques can efficiently provide with sufficient reliability. In this paper we survey the state of the art of on-chip interconnect techniques for improving performance, energy, and reliability and provide a review of interconnect reliability considerations. Finally, we provide a case study to evaluate the efficiency of error correcting codes on a state-of-the-art energy-efficient low-swing interconnect.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Florin Ciubotaru ◽  
Christoph Adelmann ◽  
Said Hamdioui ◽  
...  

In this paper, we propose an energy efficient SW based approximate 4:2 compressor comprising a 3-input and a 5-input Majority gate. We validate our proposal by means of micromagnetic simulations, and assess and compare its performance with one of the state-of-the-art SW, 45nm CMOS, and Spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5\% less energy in comparison with its accurate SW design version. Furthermore, it has the same energy consumption and error rate as the approximate compressor with Directional Coupler (DC), but it exhibits 3x lower delay. In addition, it consumes 14% less energy, while having 17% lower average error rate than the approximate 45nm CMOS counterpart. When compared with the other emerging technologies, the proposed compressor outperforms approximate Spin-CMOS based compressor by 3 orders of magnitude in term of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real-estate measured in terms of devices.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Florin Ciubotaru ◽  
Christoph Adelmann ◽  
Sorin Cotofana ◽  
...  

Spin Waves (SWs) propagate through magnetic waveguides and interfere with each other without consuming noticeable energy, which opens the road to new ultra-low energy circuit designs. In this paper we build upon SW features and propose a novel energy efficient Full Adder (FA) design consisting of The FA 1 Majority and 2 XOR gates, which outputs Sum and Carry-out are generated by means of threshold and phase detection, respectively. We validate our proposal by means of MuMax3 micromagnetic simulations and we evaluate and compare its performance with state-of-the-art SW, 22nm CMOS, Magnetic Tunnel Junction (MTJ), Spin Hall Effect (SHE), Domain Wall Motion (DWM), and Spin-CMOS implementations. Our evaluation indicates that the proposed SW FA consumes 22.5% and 43% less energy than the direct SW gate based and 22nm CMOS counterparts, respectively. Moreover it exhibits a more than 3 orders of magnitude smaller energy consumption when compared with state-of-the-art MTJ, SHE, DWM, and Spin-CMOS based FAs, and outperforms its contenders in terms of area by requiring at least 22% less chip real-estate.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Florin Ciubotaru ◽  
Christoph Adelmann ◽  
Said Hamdioui ◽  
...  

By their very nature Spin Waves (SWs) enable the realization of energy efficient circuits as they propagate and interfere within waveguides without consuming noticeable energy. However, SW computing can be even more energy efficient by taking advantage of the approximate computing paradigm as many applications are error-tolerant like multimedia and social media. In this paper we propose an ultra-low energy novel Approximate Full Adder (AFA) and a 2-bit inputs Multiplier (AMUL). The approximate FA consists of one Majority gate while the approximate MUL is built by means of 3 AND gates. We validate the correct functionality of our proposal by means of micromagnetic simulations and evaluate the approximate FA figure of merit against state-of-the-art accurate SW, 7nm CMOS, Spin Hall Effect (SHE), Domain Wall Motion (DWM), accurate and approximate 45nm CMOS, Magnetic Tunnel Junction (MTJ), and Spin-CMOS FA implementations. Our results indicate that AFA consumes 43% and 33% less energy than state-of-the-art accurate SW and 7nm CMOS FA, respectively, and saves 69% and 44% when compared with accurate and approximate 45nm CMOS, respectively, and provides a 2 orders of magnitude energy reduction when compared with accurate SHE, accurate and approximate DWM, MTJ, and Spin-CMOS, counterparts. In addition, it achieves the same error rate as approximate 45nm CMOS and Spin-CMOS FA whereas it exhibits 50% less error rate than the approximate DWM FA. Furthermore, it outperforms its contenders in terms of area by saving at least 29% chip real-estate. AMUL is evaluated and compared with state-of-the-art accurate SW and 16nm CMOS accurate and approximate state-of-the-art designs. The evaluation results indicate that it saves at least 2x and 5x energy in comparison with the state-of-the-art SW designs and 16nm CMOS accurate and approximate designs, respectively, and has an average error rate of 10%, while the approximate CMOS MUL has an average error rate of 12.5%, and requires at least 64% less chip real-estate.


Author(s):  
M. C. Parameshwara

This paper proposes six novel approximate 1-bit full adders (AFAs) for inexact computing. The six novel AFAs namely AFA1, AFA2, AFA3, AFA4, AFA5, and AFA6 are derived from state-of-the-art exact 1-bit full adder (EFA) architectures. The performance of these AFAs is compared with reported AFAs (RAAs) in terms of design metrics (DMs) and peak-signal-to-noise-ratio (PSNR). The DMs under consideration are power, delay, power-delay-product (PDP), energy-delay-product (EDP), and area. For a fair comparison, the EFAs and proposed AFAs along with RAAs are described in Verilog, simulated, and synthesized using Cadences’ RC tool, using generic 180 nm standard cell library. The unconstrained synthesis results show that: among all the proposed AFAs, the AFA1 and AFA2 are found to be energy-efficient adders with high PSNR. The AFA1 has a total [Formula: see text][Formula: see text][Formula: see text]W, [Formula: see text][Formula: see text]ps, [Formula: see text][Formula: see text]fJ, [Formula: see text][Formula: see text]Js, [Formula: see text][Formula: see text][Formula: see text]m2, and [Formula: see text][Formula: see text]dB. And the AFA2 has the total [Formula: see text][Formula: see text][Formula: see text]W, [Formula: see text][Formula: see text]ps, [Formula: see text][Formula: see text]fJ, [Formula: see text][Formula: see text]Js, [Formula: see text][Formula: see text][Formula: see text]m2, and [Formula: see text][Formula: see text]dB.


Author(s):  
Priyanshu Agarwal ◽  
Ashish D. Deshpande

The past few decades have witnessed a rapid explosion in research surrounding robotic exoskeletons due to their promising applications in medicine and human performance augmentation. Several advances in technology have led to the development of more energy efficient and viable prototypes of these devices. However, despite this rapid advancement in exoskeleton technology, most of the developed devices are limited to laboratory testing and a very few of them are commercially available for human use. This chapter discusses the advances in various constituting technologies including actuation, sensing, materials, and controls that made exoskeleton research feasible. Also presented are case studies on two state-of-the-art robotic exoskeletons, Harmony and Maestro, developed for rehabilitation of the upper body. The chapter concludes with a discussion on the ongoing challenges in exoskeleton design and ethical, social, and legal considerations related to the use of these devices and the future of exoskeletons.


2020 ◽  
Vol 9 (2) ◽  
pp. 21 ◽  
Author(s):  
Martins O. Osifeko ◽  
Gerhard P. Hancke ◽  
Adnan M. Abu-Mahfouz

Smart, secure and energy-efficient data collection (DC) processes are key to the realization of the full potentials of future Internet of Things (FIoT)-based systems. Currently, challenges in this domain have motivated research efforts towards providing cognitive solutions for IoT usage. One such solution, termed cognitive sensing (CS) describes the use of smart sensors to intelligently perceive inputs from the environment. Further, CS has been proposed for use in FIoT in order to facilitate smart, secure and energy-efficient data collection processes. In this article, we provide a survey of different Artificial Intelligence (AI)-based techniques used over the last decade to provide cognitive sensing solutions for different FIoT applications. We present some state-of-the-art approaches, potentials, and challenges of AI techniques for the identified solutions. This survey contributes to a better understanding of AI techniques deployed for cognitive sensing in FIoT as well as future research directions in this regard.


Buildings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Khaled Tarabieh ◽  
Ahmed Aboulmagd

The demand for energy-efficient housing is on the rise in Egypt. The information about the individual materials used in the construction of typical residential wall assemblies are known in the literature. However, data from lab tests to validate the performance for whole composite walls are limited. Three typical wall types were constructed and tested utilizing a standard experimental evaluation procedure based on thermal convection loads. A research framework combining the validated thermal performance data from the experimental test and the simulated data was developed. The experimental tests were performed utilizing a state-of-the-art guarded hotbox apparatus and following the guidelines of the ASTM C1363-11 standard. The solar radiation load was taken into account in the calculations according to the standard, and the error estimation and uncertainty analysis for the experimental tests are reported. The results of the experimental testing are described and a recommendation of the best wall type is noted. The output of this research will help to initiate a material database of the thermal performance of typical residential wall types used in Egypt that have been validated in the lab. This will be useful for the building industry as a whole to understand the performance of the materials in composite assemblies and their impact on energy efficiency.


2015 ◽  
pp. 249-271
Author(s):  
Göoran Berndes ◽  
Serina Ahlgren ◽  
Pål Böorjesson ◽  
Annette L. Cowie

Sign in / Sign up

Export Citation Format

Share Document