Atmospheric Plasma Jet Machining: Simulation of Spatio-Temporal Substrate Surface Temperature Distributions

Author(s):  
Thomas Arnold ◽  
Johannes Meister ◽  
Georg Böhm
2007 ◽  
Vol 515 (12) ◽  
pp. 4897-4900 ◽  
Author(s):  
T. Okada ◽  
S. Higashi ◽  
H. Kaku ◽  
N. Koba ◽  
H. Murakami ◽  
...  

2004 ◽  
Vol 120 ◽  
pp. 373-380
Author(s):  
E. Lugscheider ◽  
R. Nickel ◽  
N. Papenfuß-Janzen

The atmospheric plasma spraying (APS) process can be divided into sub-processes, which are simulated by different numerical methods. The balance equations of momentum, mass and energy of the plasma jet are solved numerically by applying the finite volume method (FVM) using a CFD (Computational Fluid Dynamics) software tool. On the other hand the solution of the thermo-mechanical problem of the coating formation on the substrate is estimated using the finite element method (FEM). The movement of the plasma jet above the surface of the substrate during the spraying process causes a time dependent boundary condition for the FEM-analysis. The heat transfer from the plasma jet to the substrate has to be taken into account. There is also a mass and heat transfer of heated particles to the substrate surface, which is responsible for the formation of the coating. Not only the plasma jet influences the boundary conditions of the coating formation, but the substrate is also a boundary for the plasma jet. This has to be considered during the plasma jet simulation, as well. This article describes the physical and mathematical background of the plasma jet/substrate heat transfer interface model, the implementation in the overall simulation process and its use in the simulation of the formation of a thermal barrier coating (TBC) made of partially yttria stabilized zirconia on a turbine blade during atmospheric plasma spraying.


2021 ◽  
Vol 13 (5) ◽  
pp. 957
Author(s):  
Guglielmo Grechi ◽  
Matteo Fiorucci ◽  
Gian Marco Marmoni ◽  
Salvatore Martino

The study of strain effects in thermally-forced rock masses has gathered growing interest from engineering geology researchers in the last decade. In this framework, digital photogrammetry and infrared thermography have become two of the most exploited remote surveying techniques in engineering geology applications because they can provide useful information concerning geomechanical and thermal conditions of these complex natural systems where the mechanical role of joints cannot be neglected. In this paper, a methodology is proposed for generating point clouds of rock masses prone to failure, combining the high geometric accuracy of RGB optical images and the thermal information derived by infrared thermography surveys. Multiple 3D thermal point clouds and a high-resolution RGB point cloud were separately generated and co-registered by acquiring thermograms at different times of the day and in different seasons using commercial software for Structure from Motion and point cloud analysis. Temperature attributes of thermal point clouds were merged with the reference high-resolution optical point cloud to obtain a composite 3D model storing accurate geometric information and multitemporal surface temperature distributions. The quality of merged point clouds was evaluated by comparing temperature distributions derived by 2D thermograms and 3D thermal models, with a view to estimating their accuracy in describing surface thermal fields. Moreover, a preliminary attempt was made to test the feasibility of this approach in investigating the thermal behavior of complex natural systems such as jointed rock masses by analyzing the spatial distribution and temporal evolution of surface temperature ranges under different climatic conditions. The obtained results show that despite the low resolution of the IR sensor, the geometric accuracy and the correspondence between 2D and 3D temperature measurements are high enough to consider 3D thermal point clouds suitable to describe surface temperature distributions and adequate for monitoring purposes of jointed rock mass.


2021 ◽  
Author(s):  
P. Y. Tan ◽  
O. H. Chin ◽  
R. Anpalagan ◽  
Y. T. Lau ◽  
H. C. Lee

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


Author(s):  
Jie Shen ◽  
Cheng Cheng ◽  
Shidong Fang ◽  
Hongbing Xie ◽  
Longwei Cheng ◽  
...  

2009 ◽  
Vol 6 (S1) ◽  
pp. S530-S536 ◽  
Author(s):  
Amsarani Ramamoorthy ◽  
Mahfujur Rahman ◽  
Damian A. Mooney ◽  
James M. Don MacElroy ◽  
Denis P. Dowling

2021 ◽  
Author(s):  
Yuan Jin ◽  
Bo Wang ◽  
Peng Ji ◽  
Zheng Qiao ◽  
Duo LI ◽  
...  

Abstract When using Inductively Coupled Plasma (ICP) as a machining tool, its processing method based on the principle of chemical etching leads to no contact stress between the tool and the material, thereby generating no mechanical damage. In recent years, this issue has been widely concerned in the field of optical fabrication. However, there are many differences between low power ICP jet and conventional ICP jet, one of which is that the former does not easily form a rotation-symmetric removal function due to its obvious pinch effect. In this research, the electromagnetism principle of the plasma pinch effect was analyzed firstly, and the jet shape under the pinch effect was classified. Then, experimental study was carried out on the plasma jet shape under the pure Ar and mixed gas of CF4-Ar, and the influence law of the reaction gas on the jet propagation shape was analyzed. Finally, the rotational symmetry of the removal function of plasma jet processing was optimized, and the nozzle design criteria based on pinch effect were proposed.


Sign in / Sign up

Export Citation Format

Share Document