Measurement of the Sensitivity and Photometric Accuracy of FT-IR Spectrometers

2000 ◽  
Vol 54 (8) ◽  
pp. 1192-1202 ◽  
Author(s):  
Bryan T. Bowie ◽  
Peter R. Griffiths

A method has been developed to investigate the sensitivity and photometric accuracy of a Fourier transform infrared (FT-IR) spectrometer by statistically analyzing a set of spectra of a 75 μm thick film of polyethylene terephthalate (PET). These tests were applied to three commercial FT-IR spectrometers. Although the photometric accuracy of all three instruments was generally better than 0.1%, small artifacts that could not be removed by signal averaging were often observed where strong bands should have a transmittance of less than 0.01%. Binding of the moving mirror of one of the spectrometers appeared to degrade its performance. When the standard deviation of the noise on 100% lines was calculated in the conventional way, none of the instruments gave efficient signal averaging after 25 scans had been coadded, because of small slopes in the baseline. By calculation of the noise level by successive difference, signal averaging was improved, but even with this approach the noise level on one of the instruments did not decrease after 100 scans had been averaged.

1993 ◽  
Vol 47 (10) ◽  
pp. 1612-1619 ◽  
Author(s):  
David M. Haaland ◽  
Edward V. Thomas ◽  
Dianna S. Blair

Coaddition of spectra in a single-component peak of a gas Chromatograph (GC) obtained with a Fourier transform infrared spectrometer is the method generally used to improve the signal-to-noise ratio (S/N) of the spectrum of the eluted analyte. It is commonly thought that coaddition of spectra to a relative intensity level of 40% of the GC peak will lead to the optimal improvement in S/N of the resulting composite spectrum. We have shown that this is not generally the case for either simulated Gaussian-shaped or experimentally obtained asymmetric GC bands. The optimal intensity level for coaddition is found to be a function of the shape of the GC band and the ratio of the number of background to sample scans used in generating the individual IR spectra. We have also introduced the use of classical least-squares (CLS) techniques as a superior method to improve the S/N of the composite analyte spectrum. With the use of CLS methods, spectra included in generating the composite spectrum can be a small fraction of the maximum intensity in the GC peak while still resulting in S/N improvements. The theoretical S/N of the composite spectrum with the use of CLS methods is shown to be always as good as or better than that achieved with the coaddition method. The improvements achieved in S/N when CLS methods are used can be more than a factor of two greater than results for the traditional coaddition method for the cases considered in this paper. Furthermore, it is shown that increasing the number of background to sample scans is a very convenient method to improve the S/N of the composite spectrum obtained by either method. The results presented here for GC/FT-IR are also generally applicable to LC/FT-IR, SFC/FT-IR, and TGA/FT-IR for bands that contain a single analyte.


1984 ◽  
Vol 62 (12) ◽  
pp. 1300-1305 ◽  
Author(s):  
L. O. Halonen ◽  
C. M. Deeley ◽  
I. M. Mills ◽  
V.-M. Horneman

High-resolution Fourier transform infrared spectra have been recorded and analyzed for the ν3, ν4, ν5, and ν6 fundamental bands of trans-DONO, and for the ν4 fundamental of cis-DONO. The spectral resolution was better than 0.01 cm−1, and the bands have been fitted using an asymmetric top Hamiltonian with a standard deviation of around 0.0006 cm−1.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2506 ◽  
Author(s):  
Yunfeng Chen ◽  
Yue Chen ◽  
Xuping Feng ◽  
Xufeng Yang ◽  
Jinnuo Zhang ◽  
...  

The feasibility of using the fourier transform infrared (FTIR) spectroscopic technique with a stacked sparse auto-encoder (SSAE) to identify orchid varieties was studied. Spectral data of 13 orchids varieties covering the spectral range of 4000–550 cm−1 were acquired to establish discriminant models and to select optimal spectral variables. K nearest neighbors (KNN), support vector machine (SVM), and SSAE models were built using full spectra. The SSAE model performed better than the KNN and SVM models and obtained a classification accuracy 99.4% in the calibration set and 97.9% in the prediction set. Then, three algorithms, principal component analysis loading (PCA-loading), competitive adaptive reweighted sampling (CARS), and stacked sparse auto-encoder guided backward (SSAE-GB), were used to select 39, 300, and 38 optimal wavenumbers, respectively. The KNN and SVM models were built based on optimal wavenumbers. Most of the optimal wavenumbers-based models performed slightly better than the all wavenumbers-based models. The performance of the SSAE-GB was better than the other two from the perspective of the accuracy of the discriminant models and the number of optimal wavenumbers. The results of this study showed that the FTIR spectroscopic technique combined with the SSAE algorithm could be adopted in the identification of the orchid varieties.


2016 ◽  
Vol 70 (5) ◽  
pp. 897-904 ◽  
Author(s):  
Mazen Erfan ◽  
Yasser M Sabry ◽  
Mohammad Sakr ◽  
Bassem Mortada ◽  
Mostafa Medhat ◽  
...  

1987 ◽  
Vol 41 (5) ◽  
pp. 809-820 ◽  
Author(s):  
James Grainger ◽  
Leslie T. Gelbaum

Reference infrared vapor-phase spectra of the 22 tetrachlorodibenzo-dioxin (TCDD) isomers were recorded at low microgram concentrations. These reference spectra of synthetic mixture components separated chromatographically or by spectral subtraction exhibit distinct infrared spectra for each isomer. The infrared frequencies are delineated in correlation tables and are interpreted in terms of substitution patterns which determine the strength of the ether linkage. Absorbance values in the 1330–1280 cm−1 (C-O-C asymmetric stretch) region correlate with specific substitution patterns and molecular geometry. Relative electron-withdrawing capacities for chlorinated aromatic rings in TCDD isomers were estimated on the basis of relative capacities determined for model compounds. Qualitative correlations were established between electron-withdrawing capacities and the effects of resonance and field interactions on the ether linkage absorption frequencies of individual TCDD isomers. Gas chromatography Fourier transform infrared (GC/FT-IR) isomer assignments are generally consistent with those obtained by proton Fourier transform nuclear magnetic resonance (1H FT/NMR) and flame ionization gas chromatography (GC/FID). A chromatographically independent method of assigning TCDD isomer structures on the basis of ether linkage asymmetric stretching frequencies was established by utilization of valence-bond approximations. GC/FT-IR assignments for several TCDD isomers differ from isomer assignments in previously published results. A user-generated, vapor-phase reference library, containing individual TCDD spectra and spectra of isomer pairs that are incompletely resolved on chromatographic columns, correctly identified each isomer in variety of mixtures by means of a software algorithm.


Sign in / Sign up

Export Citation Format

Share Document