Significance of Temperature Control in FT-NIR Spectrometers

1993 ◽  
Vol 47 (1) ◽  
pp. 7-11 ◽  
Author(s):  
C. A. Young ◽  
K. Knutson ◽  
J. D. Miller

Recent applications of near-infrared (NIR) spectroscopy to process analysis based on principal component regression or other chemometric algorithms have shown that NIR spectrometers become unstable after extended use. In the present study, stability problems are reported to occur within a 24-hour period. The instability was found to be at a maximum when highly IR-absorbing materials were analyzed and was attributed to temperature fluctuations in both the cooling water to the source and the purge gas to the optical bench. The problem was alleviated by using a thermostated recirculator and liquid nitrogen boil-off. Ensuing discussions show the problem to be relevant to other instruments which perform Fourier transformations on interferograms.

1988 ◽  
Vol 42 (7) ◽  
pp. 1273-1284 ◽  
Author(s):  
Tomas Isaksson ◽  
Tormod Næs

Near-infrared (NIR) reflectance spectra of five different food products were measured. The spectra were transformed by multiplicative scatter correction (MSC). Principal component regression (PCR) was performed, on both scatter-corrected and uncorrected spectra. Calibration and prediction were performed for four food constituents: protein, fat, water, and carbohydrates. All regressions gave lower prediction errors (7–68% improvement) by the use of MSC spectra than by the use of uncorrected absorbance spectra. One of these data sets was studied in more detail to clarify the effects of the MSC, by using PCR score, residual, and leverage plots. The improvement by using nonlinear regression methods is indicated.


1996 ◽  
Vol 4 (1) ◽  
pp. 75-84 ◽  
Author(s):  
P. Robert ◽  
M.-F. Devaux ◽  
D. Bertrand

With the increase of near infrared (NIR) applications, numerous chemometric methods have been developed. Among the mathematical treatments available, principal comoponent analysis (PCA) is certainly the most well-known when considering highly correlated data. In the field of near infrared spectroscopy, it allows the study of spectra without deleting wavelengths and without making any preliminary assumptions on the data. One advantage of PCA lies in the graphical displays obtained and, more precisely, on the similarity maps and spectral patterns. While the maps reveal clusters of the samples, the spectral patterns make a spectral interpretation possible. The present paper reviews our contribution to the development and application of PCA to NIR spectroscopy. It shows that PCA is the core of various mathematical treatments such as principal component regression (PCR), factorial discriminant analysis (FDA) and canonical correlation analysis (CCA). One advantage of using PCA in the prediction techniques lies in the use of all the wavelengths in the predictive model. The extraction of relevant and comprehensive wavelengths can be guided by CCA which allows the description of the samples by taking both mid- and near infrared data into account. Besides a comprehensive presentation of the mathematical treatements, examples are given.


1993 ◽  
Vol 47 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Charles E. Miller

The ability of near-infrared (NIR) spectroscopy, combined with principal component regression (PCR), to nondestructively determine the blend ratio of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) in extruded films is demonstrated. Results indicate that the NIR spectrum in the region 2100 to 2500 nm can be used to determine the HDPE mass percentage of 60–80- μm-thick film samples to within 2.5%, over a range of 0 to 100%. NIR spectral effects from scattering are important for the determination of the HDPE % for HDPE contents above 50%, and spectral effects from changes in the methyl group concentration and perhaps the PE crystallinity are important for the determination of the HDPE % for HDPE contents below 50%. In addition, a large variation between the spectra of replicate samples, probably caused by variations in the degree or direction of molecular orientation in the samples, was observed.


1993 ◽  
Vol 47 (3) ◽  
pp. 346-356 ◽  
Author(s):  
Charles E. Miller ◽  
Svend A. Svendsen ◽  
Tormod Næ

The use of near-infrared (NIR) spectroscopy for the rapid and nondestructive analysis of food packaging laminates containing polyethylene (PE), polyamide-6 (PA-6), and ethylene vinyl alcohol (EVOH) layers is demonstrated. The method of Pathlength Correction with Chemical Modeling (PLC-MC) is used to estimate the total laminate thickness, and Principal Component Regression (PCR), is used to estimate the thickness percentages of PE and EVOH in the laminates, from NIR reflective-transmission spectra in the region 1500–2500 nm. Results indicate that the NIR method can be used to determine the total laminate thickness within 2–4 μm, the PE layer thickness percentage within 0.7–1.8%, and the EVOH layer thickness within 0.7–0.8 μm. In addition, detailed observation of the PCR models indicates that the NIR method is also sensitive to the absorbed water content, the morphology of the polymers, and perhaps the amount of polyurethane adhesive in the laminates. The usefulness of PCR outlier detection, for identification and characterization of strange samples, and principal component rotation, for improvement of PCR model interpretability, is also demonstrated.


1997 ◽  
Vol 51 (3) ◽  
pp. 350-357 ◽  
Author(s):  
Tormod Næs ◽  
Kjell Ivar Hildrum

Often the primary goal of analytical measurement tasks is not to find good estimates of continuous reference values but rather to determine whether a sample belongs to one of a number of categories or subgroups. In this paper the potential of different statistical techniques in the classification of raw beef samples in tenderness subgroups was studied. The reference values were based on sensory analysis of beef tenderness of 90 samples from bovine M. longissimus dorsi muscles. The sample set was divided into three categories—very tough, intermediate, and very tender—according to degree of tenderness. A training set of samples was used to find the relationship between category and near-infrared (NIR) spectroscopic measurements. The study indicates that classical discriminant analysis has advantages in comparison to multivariate calibration methods [i.e., principal component regression (PCR)], in this application. One reason for this observation seems to be that PCR underestimates high measurement values and overestimates low values. In this way most samples are assigned to the intermediate group of samples, causing a small number of erroneous classifications for the intermediate subgroup, but a large number of errors for the two extreme groups. With the use of PCR the number of correct classifications in the extreme subgroups was as low as 23%, while the use of discriminate analysis increased this number to almost 60%. The number of classifications in correct or neighbor subgroup for the two extreme subgroups was equal to 97%. A “bias-correction” was also attempted for PCR, and this gave results comparable to the best results obtained by discriminant analysis methods. Test sets used NIR analysis of fresh, raw beef samples with different processing. While this spectroscopic approach had previously been shown to be useful with frozen products, it appears unsuitable at this time for fresh beef. However, its marginal analytical utility proved useful in evaluating the two classification approaches employed in this study.


2020 ◽  
Vol 90 (19-20) ◽  
pp. 2275-2283
Author(s):  
Mingxia Li ◽  
Guangting Han ◽  
Wei Jiang ◽  
Chengfeng Zhou ◽  
Yuanming Zhang ◽  
...  

Plant dye is a promising dyestuff to be used in textiles due to its unique environmental compatibility. However, currently there is no effective method for the identification of plant-dyed and chemical-dyed textiles. In this study, near-infrared (NIR) spectroscopy combined with three kinds of pattern recognition methods, namely soft independent modeling of class analogy (SIMCA), partial least squares (PLS) regression and principal component regression (PCR), were applied to identify cotton fabrics dyed with plant and chemical dyes. A total of 336 plant dye and chemical dye dyed cotton fabrics were prepared and the NIR spectra were collected; 267 samples were used as the calibration set, while the remaining 69 samples were used as the validation set. After pretreatment with the Savitzky–Golay first derivative, the calibration model was constructed. In the SIMCA model, the correct recognition rate values of the calibration and prediction sets were 100% and 98.55%, respectively. The PLS model showed that the number of principal components (PCs) and the correlation coefficient ( R2) were 8 and 0.9978, respectively, and the results of PCR were PC = 10, R2 = 0.9937. Both methods were satisfactory for the predicted results. The overall results indicated that NIR spectroscopy could be used for rapid and nondestructive identification of plant-dyed cotton fabrics and chemical-dyed cotton fabrics.


2014 ◽  
Vol 32 (No. 1) ◽  
pp. 37-47 ◽  
Author(s):  
M.J. Martelo-Vidal ◽  
M. Vázquez

Spectroscopy of UV-VIS-NIR combined with chemometric analyses was used as a non-destructive technique to build models for the quantitative characterisation of the main compounds of wine. The work in mixtures can give insight into how interferences affect the performance of calibrations in wines. Ethanol, glycerol, glucose, tartaric acid, malic acid, lactic acid, and acetic acid were evaluated as pure compounds and in mixtures. Different pre-treatments for the spectra and modelling strategies such as partial least squares (PLS) regression or Principal Component Regression (PCR) were evaluated. All pure compounds studied showed a good relationship between spectra and concentrations. However, interferences were observed in the mixtures and only good models for ethanol, tartaric acid, and malic acid were obtained. The best model was obtained in the NIR region for ethanol and in the UV region for tartaric acid and malic acid. The results indicate that NIR spectroscopy could be used as an alternative to conventional chemical methods for ethanol determination and UV spectroscopy for the determination of tartaric acid and malic acid.


2019 ◽  
Vol 15 (5) ◽  
pp. 439-446
Author(s):  
Qiushi Peng ◽  
Yi Bao ◽  
Tingyu Chen ◽  
Qianrong Peng ◽  
Min Yang

Introduction: This study aimed at developing a technology to measure the hardness of Ibuprofen (IBU) tablets and optimize the IBU formulation using Near-infrared (NIR) spectroscopy. Materials and Methods: Tablets (400 mg±5%, 10mm in diameter) consisting of IBU, microcrystalline cellulose SH-103, carboxymethyl starch sodium, magnesium stearate, silicon dioxide were formed of various hardness (2kg, 4kg, 6kg, 8kg, 10kg, 12kg). The reflectance NIR spectra of various tablets were employed to establish 9 calibrations models, which were further used to predict tablet hardness by Partial least squares (PLS) and principal component regression (PCR) analysis. Results and Conclusion: Cross-validation with independent samples shows that PLS is the optimal predictive model. Which R2=0.9832, RSECV=0.334 and RSE=0.0669. This study established a new, simple, rapid, nondestructive and reliable methodology to optimize the IBU tablet hardness.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elise A. Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible–near-infrared (Vis–NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis–NIR spectroscopy in quantifying blood in faeces. Methods Visible–NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387–609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. Results Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57–94%, specificity 44–79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion This study demonstrates the potential of Vis–NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document