scholarly journals Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation

PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001225
Author(s):  
James P. J. Hall ◽  
Rosanna C. T. Wright ◽  
Ellie Harrison ◽  
Katie J. Muddiman ◽  
A. Jamie Wood ◽  
...  

Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.

2021 ◽  
Author(s):  
James Peter John Hall ◽  
Rosanna C. T. Wright ◽  
Ellie Harrison ◽  
Katie J. Muddiman ◽  
Jamie Wood ◽  
...  

Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid acquisition are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or expression level. Here we show -- using a combination of experimental evolution, reverse genetics, and transcriptomics -- that fitness costs of two divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid acquisition. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by upregulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained upregulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer due to their propensity for amelioration by single compensatory mutations, explaining why plasmids are so common in bacterial genomes.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 467
Author(s):  
Aina Ichihara ◽  
Hinako Ojima ◽  
Kazuyoshi Gotoh ◽  
Osamu Matsushita ◽  
Susumu Take ◽  
...  

The infection caused by Helicobacter pylori is associated with several diseases, including gastric cancer. Several methods for the diagnosis of H. pylori infection exist, including endoscopy, the urea breath test, and the fecal antigen test, which is the serum antibody titer test that is often used since it is a simple and highly sensitive test. In this context, this study aims to find the association between different antibody reactivities and the organization of bacterial genomes. Next-generation sequences were performed to determine the genome sequences of four strains of antigens with different reactivity. The search was performed on the common genes, with the homology analysis conducted using a genome ring and dot plot analysis. The two antigens of the highly reactive strains showed a high gene homology, and Western blots for CagA and VacA also showed high expression levels of proteins. In the poorly responsive antigen strains, it was found that the inversion occurred around the vacA gene in the genome. The structure of bacterial genomes might contribute to the poor reactivity exhibited by the antibodies of patients. In the future, an accurate serodiagnosis could be performed by using a strain with few gene mutations of the antigen used for the antibody titer test of H. pylori.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Matthew R. Olm ◽  
Alexander Crits-Christoph ◽  
Spencer Diamond ◽  
Adi Lavy ◽  
Paula B. Matheus Carnevali ◽  
...  

ABSTRACT Longstanding questions relate to the existence of naturally distinct bacterial species and genetic approaches to distinguish them. Bacterial genomes in public databases form distinct groups, but these databases are subject to isolation and deposition biases. To avoid these biases, we compared 5,203 bacterial genomes from 1,457 environmental metagenomic samples to test for distinct clouds of diversity and evaluated metrics that could be used to define the species boundary. Bacterial genomes from the human gut, soil, and the ocean all exhibited gaps in whole-genome average nucleotide identities (ANI) near the previously suggested species threshold of 95% ANI. While genome-wide ratios of nonsynonymous and synonymous nucleotide differences (dN/dS) decrease until ANI values approach ∼98%, two methods for estimating homologous recombination approached zero at ∼95% ANI, supporting breakdown of recombination due to sequence divergence as a species-forming force. We evaluated 107 genome-based metrics for their ability to distinguish species when full genomes are not recovered. Full-length 16S rRNA genes were least useful, in part because they were underrecovered from metagenomes. However, many ribosomal proteins displayed both high metagenomic recoverability and species discrimination power. Taken together, our results verify the existence of sequence-discrete microbial species in metagenome-derived genomes and highlight the usefulness of ribosomal genes for gene-level species discrimination. IMPORTANCE There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics.


2021 ◽  
Author(s):  
Pavithra Anantharaman Sudhakari ◽  
Bhaskar Chandra Mohan Ramisetty

Plasmids are acellular propagating entities that depend, as molecular parasites, on bacteria for propagation. The conflict between the bacterial genome and the parasitic plasmids allows the emergence of genetic arms such as Colicin (Col) operons. Endonuclease Col operons encode three proteins; an endonuclease colicin (cleaves nucleic acids), an immunity protein (inactivates its cognate colicin), and lysis protein (aids in colicin release via host cell lysis). Col operons are efficient plasmid-maintenance systems; (i) the plasmid cured cells are killed by the colicins; (ii) damaged cells lyse and releases the colicins that eliminate the competitors; and (iii) the released plasmids invade new bacteria. Surprisingly, some bacterial genomes have Col operons. The eco-evolutionary drive and physiological relevance of genomic Col operons are unknown. We investigated plasmidic and genomic Col operons using sequence analyses from an eco-evolutionary perspective. We found 1,248 genomic and plasmidic colicins across 30 bacterial genera. Although 51% of the genomes harbor colicins, the majority of the genomic colicins lacked a functional lysis gene, suggesting the negative selection of lethal genes. The immunity gene of the Col operon protects the cured host thereby eliminating the metabolic burden due to plasmid. We show mutual exclusivity of col operons on genomes and plasmids. We propose anti-addiction hypothesis for genomic colicins. Using a stochastic agent-based model, we show that the genomic colicins confer an advantage to the host genome in terms of immunity to the toxin and elimination of plasmid burden. Col operons are genetic arms that regulate the ecological interplay of bacterial genomes and plasmids.


2020 ◽  
Author(s):  
Robert A. Petit ◽  
Timothy D. Read

AbstractSequencing of bacterial genomes using Illumina technology has become such a standard procedure that often data are generated faster than can be conveniently analyzed. We created a new series of pipelines called Bactopia, built using Nextflow workflow software, to provide efficient comparative genomic analyses for bacterial species or genera. Bactopia consists of a dataset setup step (Bactopia Datasets; BaDs) where a series of customizable datasets are created for the species of interest; the Bactopia Analysis Pipeline (BaAP), which performs quality control, genome assembly and several other functions based on the available datasets and outputs the processed data to a structured directory format; and a series of Bactopia Tools (BaTs) that perform specific post-processing on some or all of the processed data. BaTs include pan-genome analysis, computing average nucleotide identity between samples, extracting and profiling the 16S genes and taxonomic classification using highly conserved genes. It is expected that the number of BaTs will increase to fill specific applications in the future. As a demonstration, we performed an analysis of 1,664 public Lactobacillus genomes, focusing on L. crispatus, a species that is a common part of the human vaginal microbiome. Bactopia is an open source system that can scale from projects as small as one bacterial genome to thousands that allows for great flexibility in choosing comparison datasets and options for downstream analysis. Bactopia code can be accessed at https://www.github.com/bactopia/bactopia.


2005 ◽  
Vol 49 (3) ◽  
pp. 1113-1119 ◽  
Author(s):  
L. Xu ◽  
A. Pozniak ◽  
A. Wildfire ◽  
S. A. Stanfield-Oakley ◽  
S. M. Mosier ◽  
...  

ABSTRACT The objective of this study was to track the evolution of sequence changes in both the heptad region 1 (HR1) and HR2 domains of gp41 associated with resistance to enfuvirtide (ENF) in a patient cohort receiving long-term ENF treatment. We studied 17 highly antiretroviral agent-experienced patients receiving long-term ENF treatment with virological rebound or a lack of suppression. Sixty-two samples obtained after between 5 and 107 weeks of ENF therapy were analyzed. Baseline samples from 15 of these 17 patients were available for analysis. Viruses from five samples from four patients were also sequenced after the cessation of ENF therapy. Drug susceptibilities were assessed by a pseudotype virus reporter assay. We identified HR1 and HR2 sequence changes over time in relation to the baseline sequences. Mutations in HR1 (amino acids 36 to 45) were noted in all cases, including previously unreported changes N42Q/H and N43Q. In addition to a range of HR2 sequence changes at polymorphic sites, isolates from 6 of 17 (35%) patients developed an S138A substitution in the HR2 domain at least 8 weeks after the start of ENF treatment and also subsequent to the first emergence of HR1 mutations. In most, but not all, cases the S138A mutation accompanied HR1 mutations at position 43. Molecular modeling demonstrates the close proximity of S138A with amino acids 40 and 45 in HR1. Of note, isolates in samples available from four patients demonstrated the loss of both the HR1 and the S138A HR2 mutations following the cessation of therapy. We show that the S138A HR2 mutation increased the level of resistance by approximately threefold over that conferred by the HR1 mutation N43D. Continual evolution of HR1 in the domain from amino acids 36 to 45 was observed during long-term ENF therapy. We have identified, for the first time, an ENF resistance-associated HR2 mutation, S138A, which appeared in isolates from 6 of 17 patients with virological failure and demonstrated its potential to contribute to drug resistance. We propose that this represents a possible secondary and/or compensatory mutation, particularly when it coexists with mutations at position 43 in HR-1.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Michelle Spoto ◽  
Changhui Guan ◽  
Elizabeth Fleming ◽  
Julia Oh

ABSTRACT The CRISPR/Cas system has significant potential to facilitate gene editing in a variety of bacterial species. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) represent modifications of the CRISPR/Cas9 system utilizing a catalytically inactive Cas9 protein for transcription repression and activation, respectively. While CRISPRi and CRISPRa have tremendous potential to systematically investigate gene function in bacteria, few programs are specifically tailored to identify guides in draft bacterial genomes genomewide. Furthermore, few programs offer open-source code with flexible design parameters for bacterial targeting. To address these limitations, we created GuideFinder, a customizable, user-friendly program that can design guides for any annotated bacterial genome. GuideFinder designs guides from NGG protospacer-adjacent motif (PAM) sites for any number of genes by the use of an annotated genome and FASTA file input by the user. Guides are filtered according to user-defined design parameters and removed if they contain any off-target matches. Iteration with lowered parameter thresholds allows the program to design guides for genes that did not produce guides with the more stringent parameters, one of several features unique to GuideFinder. GuideFinder can also identify paired guides for targeting multiplicity, whose validity we tested experimentally. GuideFinder has been tested on a variety of diverse bacterial genomes, finding guides for 95% of genes on average. Moreover, guides designed by the program are functionally useful—focusing on CRISPRi as a potential application—as demonstrated by essential gene knockdown in two staphylococcal species. Through the large-scale generation of guides, this open-access software will improve accessibility to CRISPR/Cas studies of a variety of bacterial species. IMPORTANCE With the explosion in our understanding of human and environmental microbial diversity, corresponding efforts to understand gene function in these organisms are strongly needed. CRISPR/Cas9 technology has revolutionized interrogation of gene function in a wide variety of model organisms. Efficient CRISPR guide design is required for systematic gene targeting. However, existing tools are not adapted for the broad needs of microbial targeting, which include extraordinary species and subspecies genetic diversity, the overwhelming majority of which is characterized by draft genomes. In addition, flexibility in guide design parameters is important to consider the wide range of factors that can affect guide efficacy, many of which can be species and strain specific. We designed GuideFinder, a customizable, user-friendly program that addresses the limitations of existing software and that can design guides for any annotated bacterial genome with numerous features that facilitate guide design in a wide variety of microorganisms.


2001 ◽  
Vol 280 (4) ◽  
pp. R1206-R1212 ◽  
Author(s):  
Jean-Christophe Leloup ◽  
Albert Goldbeter

With the use of a molecular model for circadian rhythms in Drosophila based on transcriptional regulation, we show how a single, critical pulse of light can permanently suppress circadian rhythmicity, whereas a second light pulse can restore the abolished rhythm. The phenomena occur via the pulsatile induction of either protein degradation or gene expression in conditions in which a stable steady state coexists with stable circadian oscillations of the limit cycle type. The model indicates that suppression by a light pulse can only be accounted for by assuming that the biochemical effects of such a pulse much outlast its actual duration. We determine the characteristics of critical pulses suppressing the oscillations as a function of the phase at which the rhythm is perturbed. The model predicts how the amplitude and duration of the biochemical changes induced by critical pulses vary with this phase. The results provide a molecular, dynamic explanation for the long-term suppression of circadian rhythms observed in a variety of organisms in response to a single light pulse and for the subsequent restoration of the rhythms by a second light pulse.


2006 ◽  
Vol 73 (3) ◽  
pp. 846-854 ◽  
Author(s):  
Nicholas H. Bergman ◽  
Karla D. Passalacqua ◽  
Philip C. Hanna ◽  
Zhaohui S. Qin

ABSTRACT Various computational approaches have been proposed for operon prediction, but most algorithms rely on experimental or functional data that are only available for a small subset of sequenced genomes. In this study, we explored the possibility of using phylogenetic information to aid in operon prediction, and we constructed a Bayesian hidden Markov model that incorporates comparative genomic data with traditional predictors, such as intergenic distances. The prediction algorithm performs as well as the best previously reported method, with several significant advantages. It uses fewer data sources and so it is easier to implement, and the method is more broadly applicable than previous methods—it can be applied to essentially every gene in any sequenced bacterial genome. Furthermore, we show that near-optimal performance is easily reached with a generic set of comparative genomes and does not depend on a specific relationship between the subject genome and the comparative set. We applied the algorithm to the Bacillus anthracis genome and found that it successfully predicted all previously verified B. anthracis operons. To further test its performance, we chose a predicted operon (BA1489-92) containing several genes with little apparent functional relatedness and tested their cotranscriptional nature. Experimental evidence shows that these genes are cotranscribed, and the data have interesting implications for B. anthracis biology. Overall, our findings show that this algorithm is capable of highly sensitive and accurate operon prediction in a wide range of bacterial genomes and that these predictions can lead to the rapid discovery of new functional relationships among genes.


2017 ◽  
Vol 20 (4) ◽  
pp. 1560-1567 ◽  
Author(s):  
David Arndt ◽  
Ana Marcu ◽  
Yongjie Liang ◽  
David S Wishart

Abstract PHAST (PHAge Search Tool) and its successor PHASTER (PHAge Search Tool – Enhanced Release) have become two of the most widely used web servers for identifying putative prophages in bacterial genomes. Here we review the main capabilities of these web resources, provide some practical guidance regarding their use and discuss possible future improvements. PHAST, which was first described in 2011, made its debut just as whole bacterial genome sequencing and was becoming inexpensive and relatively routine. PHAST quickly gained popularity among bacterial genome researchers because of its web accessibility, its ease of use along with its enhanced accuracy and rapid processing times. PHASTER, which appeared in 2016, provided a number of much-needed enhancements to the PHAST server, including greater processing speed (to cope with very large submission volumes), increased database sizes, a more modern user interface, improved graphical displays and support for metagenomic submissions. Continuing developments in the field, along with increased interest in automated phage and prophage finding, have already led to several improvements to the PHASTER server and will soon lead to the development of a successor to PHASTER (to be called PHASTEST).


Sign in / Sign up

Export Citation Format

Share Document