scholarly journals N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses

PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001292
Author(s):  
Hideki Terajima ◽  
Mijia Lu ◽  
Linda Zhang ◽  
Qi Cui ◽  
Yanhong Shi ◽  
...  

Among over 150 distinct RNA modifications, N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing represent 2 of the most studied modifications on mammalian mRNAs. Although both modifications occur on adenosine residues, knowledge on potential functional crosstalk between these 2 modifications is still limited. Here, we show that the m6A modification promotes expression levels of the ADAR1, which encodes an A-to-I RNA editing enzyme, in response to interferon (IFN) stimulation. We reveal that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) mediates up-regulation of ADAR1; YTHDF1 is a reader protein that can preferentially bind m6A-modified transcripts and promote translation. Knockdown of YTHDF1 reduces the overall levels of IFN-induced A-to-I RNA editing, which consequently activates dsRNA-sensing pathway and increases expression of various IFN-stimulated genes. Physiologically, YTHDF1 deficiency inhibits virus replication in cells through regulating IFN responses. The A-to-I RNA editing activity of ADAR1 plays important roles in the YTHDF1-dependent IFN responses. Therefore, we uncover that m6A and YTHDF1 affect innate immune responses through modulating the ADAR1-mediated A-to-I RNA editing.

Cell Reports ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. 1482-1494 ◽  
Author(s):  
Niamh M. Mannion ◽  
Sam M. Greenwood ◽  
Robert Young ◽  
Sarah Cox ◽  
James Brindle ◽  
...  

2017 ◽  
Author(s):  
Weijin Xu ◽  
Reazur Rahman ◽  
Michael Rosbash

AbstractWe previously developed TRIBE, a method for the identification of cell-specific RNA binding protein targets. TRIBE expresses an RBP of interest fused to the catalytic domain (cd) of the RNA editing enzyme ADAR and performs Adenosine-to-Inosine editing on RNA targets of the RBP. However, target identification is limited by the low editing efficiency of the ADARcd. Here we describe HyperTRIBE, which carries a previously characterized hyperactive mutation (E488Q) of the ADARcd. HyperTRIBE identifies dramatically more editing sites, many of which are also edited by TRIBE but at a much lower editing frequency. HyperTRIBE therefore more faithfully recapitulates the known binding specificity of its RBP than TRIBE. In addition, separating RNA binding from the enhanced editing activity of the HyperTRIBE ADAR catalytic domain sheds light on the mechanism of ADARcd editing as well as the enhanced activity of the HyperADARcd.


2018 ◽  
Vol 158 ◽  
pp. 288-302 ◽  
Author(s):  
Priya Luthra ◽  
Jacinth Naidoo ◽  
Colette A. Pietzsch ◽  
Sampriti De ◽  
Sudip Khadka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document