scholarly journals Evaluation of CD8 T cell killing models with computer simulations of 2-photon imaging experiments

2020 ◽  
Vol 16 (12) ◽  
pp. e1008428
Author(s):  
Ananya Rastogi ◽  
Philippe A. Robert ◽  
Stephan Halle ◽  
Michael Meyer-Hermann

In vivo imaging of cytotoxic T lymphocyte (CTL) killing activity revealed that infected cells have a higher observed probability of dying after multiple contacts with CTLs. We developed a three-dimensional agent-based model to discriminate different hypotheses about how infected cells get killed based on quantitative 2-photon in vivo observations. We compared a constant CTL killing probability with mechanisms of signal integration in CTL or infected cells. The most likely scenario implied increased susceptibility of infected cells with increasing number of CTL contacts where the total number of contacts was a critical factor. However, when allowing in silico T cells to initiate new interactions with apoptotic target cells (zombie contacts), a contact history independent killing mechanism was also in agreement with experimental datasets. The comparison of observed datasets to simulation results, revealed limitations in interpreting 2-photon data, and provided readouts to distinguish CTL killing models.

2019 ◽  
Author(s):  
Ananya Rastogi ◽  
Philippe Robert ◽  
Stephan Halle ◽  
Michael Meyer-Hermann

AbstractIn vivo imaging of cytotoxic T lymphocyte (CTL) killing activity revealed that infected cells have a higher observed probability of dying after multiple contacts with CTLs, suggesting memory effect in CTLs or infected cells. We developed a three-dimensional agent-based model of CTL killing activity to discriminate different hypotheses about how infected cells get killed based on quantitative 2-photon in vivo observations. We compared a constant CTL killing probability with mechanisms of signal integration in CTL or infected cells. The most likely scenario implied increased susceptibility of infected cells with increasing number of CTL contacts where the total number of contacts was a critical factor as opposed to signal integration over many contacts. However, when allowing in silico T cells to interact with apoptotic target cells (zombie contacts), a contact history independent killing mechanism was also in agreement with the experimental datasets. We showed that contacts that take place between CTLs and dying infected cells impact the observed killing dynamics because even in absence of modulation of cell properties, we saw an increase of the observed probability of killing infected cells with more interactions. The duration taken by an infected cell to die and the per capita killing rate (PCKR) of CTLs, parameters hard to measure directly, were determined from the model and turned out predictive to distinguish the different CTL killing models in future experiments. The comparison of observed datasets to simulation results, revealed limitations in interpreting 2-photon data, and provided prediction for additional measurements to distinguish CTL killing models.HighlightsKilling of infected cells by cytotoxic T cells typically involves more than a single contact.Cytotoxic T cells or infected cells integrate signals from multiple interactions.T cell contacts with dying infected cells have a major impact on in vivo data interpretation.Significance StatementDespite having a clear understanding of cytotoxic T lymphocyte (CTL) mediated cytotoxicity mechanisms, the quantitative dynamics remain unexplored at a cellular level. We developed an agent-based model to compare different hypotheses for mechanisms of CTL mediated cytotoxicity that could lead to an increase in observed probability of killing infected cells at higher interactions with CTLs as seen in vivo. We showed that this behaviour can be explained by modulation of properties by infected cells or CTLs with increasing number of contacts. For the modulation, we compared two modes of signal integration and showed that time is not a relevant parameter in signal integration. We also studied the impact of contacts between CTLs and apoptotic infected cells on observed killing properties.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Patricia Kleinpeter ◽  
Christelle Remy-Ziller ◽  
Eline Winter ◽  
Murielle Gantzer ◽  
Virginie Nourtier ◽  
...  

ABSTRACTIn this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676–8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitroreplication, oncolytic activitiesin vitroandin vivo,and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCEThe vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


PLoS Biology ◽  
2006 ◽  
Vol 4 (4) ◽  
pp. e90 ◽  
Author(s):  
Becca Asquith ◽  
Charles T. T Edwards ◽  
Marc Lipsitch ◽  
Angela R McLean

2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2020 ◽  
Author(s):  
Eric E. Abrahamson ◽  
Wenxiao Zheng ◽  
Vaishali Muralidaran ◽  
Milos D. Ikonomovic ◽  
David C. Bloom ◽  
...  

Alzheimer's disease is a progressive neurodegenerative disease characterized neuropathologically by presence of extracellular amyloid plaques composed of fibrillar amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles. Post-mortem and in vivo studies implicate HSV-1 infection in the brain as a precipitating factor in disease/pathology initiation. HSV-1 infection of two-dimensional (2D) neuronal cultures causes intracellular accumulation of Aβ42 peptide, but these 2D models do not recapitulate the three-dimensional (3D) architecture of brain tissue. We employed human induced pluripotent stem cells (hiPSCs) to compare patterns of Aβ42 accumulation in HSV-1 infected 2D (neuronal monolayers) and 3D neuronal cultures (brain organoids). Akin to prior studies, HSV-1-infected 2D cultures showed Aβ42 immunoreactivity in cells expressing the HSV-1 antigen ICP4 (ICP4+). Conversely, accumulation of Aβ42 in ICP4+ cells in infected organoids was rarely observed. These results highlight the importance of considering 3D cultures to model host-pathogen interaction. IMPORTANCE The “pathogen” hypothesis of Alzheimer’s disease (AD) proposes that brain HSV-1 infection could be an initial source of amyloid beta (Aβ) peptide-containing amyloid plaque development. Aβ accumulation was reported in HSV-1-infected 2D neuronal cultures and neural stem cell cultures, as well as in HSV-1-infected 3D neuronal culture models. The current study extends these findings by showing different patterns of Aβ42 accumulation following HSV-1 infection of 2D compared to 3D neuronal cultures (brain organoids). Specifically, 2D neuronal cultures showed Aβ42-immunoreactivity mainly in HSV-1-infected cells and only rarely in uninfected cells or infected cells exposed to antivirals. Conversely, 3D brain organoids showed accumulation of Aβ42 mainly in non-infected cells surrounding HSV-1-infected cells. We suggest that because brain organoids better recapitulate architectural features of a developing brain than 2D cultures, they may be a more suitable model to investigate the involvement of HSV-1 in the onset of AD pathology.


2018 ◽  
Vol 66 (3) ◽  
pp. 493-508 ◽  
Author(s):  
István Mészáros ◽  
Ferenc Olasz ◽  
Enikő Kádár-Hürkecz ◽  
Ádám Bálint ◽  
Ákos Hornyák ◽  
...  

Feline enteric coronaviruses have three open reading frames (ORFs) in region 3 (3a, 3b, and 3c). All three ORFs were expressed with C-terminal eGFP and 3xFLAG tags in different cell lines and their localisation was determined. ORF 3a is predicted to contain DNA-binding and transcription activator domains, and it is localised in the nucleus and in the cytoplasm. ORF 3b is also predicted to contain DNA-binding and activator domains, and was found to localise in the mitochondrion. Besides that, in some of the non-infected and FIPV-infected cells nucleolar, perinuclear or nuclear membrane accumulation of the eGFP-tagged 3b was observed. The exact compartmental localisation of ORF 3c is yet to be determined. However, based on our co-localisation studies 3c does not seem to be localised in the ER-Golgi network, ERGIC or peroxisomes. The expression of 3c-eGFP is clearly cell type dependent, it is more stable in MARC 145 cells than in Fcwf-4 or CrFK cells, which might reflectin vivostability differences of 3c in natural target cells (enterocytes vs. monocytes/macrophages).


2007 ◽  
Vol 81 (10) ◽  
pp. 4973-4980 ◽  
Author(s):  
Michael S. Bennett ◽  
Hwee L. Ng ◽  
Mirabelle Dagarag ◽  
Ayub Ali ◽  
Otto O. Yang

ABSTRACT Cytotoxic T lymphocytes (CTLs) are crucial for immune control of viral infections. “Functional avidity,” defined by the sensitizing dose of exogenously added epitope yielding half-maximal CTL triggering against uninfected target cells (SD50), has been utilized extensively as a measure of antiviral efficiency. However, CTLs recognize infected cells via endogenously produced epitopes, and the relationship of SD50 to antiviral activity has never been directly revealed. We elucidate this relationship by comparing CTL killing of cells infected with panels of epitope-variant viruses to the corresponding SD50 for the variant epitopes. This reveals a steeply sigmoid relationship between avidity and infected cell killing, with avidity thresholds (defined as the SD50 required for CTL to achieve 50% efficiency of infected cell killing [KE50]), below which infected cell killing rapidly drops to none and above which killing efficiency rapidly plateaus. Three CTL clones recognizing the same viral epitope show the same KE50 despite differential recognition of individual epitope variants, while CTLs recognizing another epitope show a 10-fold-higher KE50, demonstrating epitope dependence of KE50. Finally, the ability of CTLs to suppress viral replication depends on the same threshold KE50. Thus, defining KE50 values is required to interpret the significance of functional avidity measurements and predict CTL efficacy against virus-infected cells in pathogenesis and vaccine studies.


1986 ◽  
Vol 163 (1) ◽  
pp. 166-178 ◽  
Author(s):  
P Perez ◽  
R W Hoffman ◽  
J A Titus ◽  
D M Segal

Antibody heteroaggregates have been used to render human peripheral blood T cells lytic for specified targets. The heteroaggregates contain anti-T3 covalently linked to antibodies against nominal target cell antigens. Such heteroaggregates bind target cells directly to T3 molecules on effector cells and trigger target cell lysis. Freshly prepared human PBL, when coated with anti-T3-containing heteroaggregates, are lytic without further stimulation, although brief exposure to crude lymphokine-containing supernatants or recombinant IL-2, but not recombinant IFN-gamma, enhances the activity. The effector cells are T8+, and when fully stimulated, their lytic activity approaches that of some cloned CTL. When T cells are treated with heteroaggregate, washed, and incubated at 37 degrees C in medium not containing heteroaggregate, they retain activity for at least 24 h. The results of this study suggest a strategy in which heteroaggregate-coated T cells could be used in vivo to mount a lytic response against pathogenic cells such as tumor cells or virus-infected cells.


2008 ◽  
Vol 82 (23) ◽  
pp. 11749-11757 ◽  
Author(s):  
Vitaly V. Ganusov ◽  
Rob J. De Boer

ABSTRACT Despite recent advances in immunology, several key parameters determining virus dynamics in infected hosts remain largely unknown. For example, the rate at which specific effector and memory CD8 T cells clear virus-infected cells in vivo is hardly known for any viral infection. We propose a framework to quantify T-cell-mediated killing of infected or peptide-pulsed target cells using the widely used in vivo cytotoxicity assay. We have reanalyzed recently published data on killing of peptide-pulsed splenocytes by cytotoxic T lymphocytes and memory CD8 T cells specific to NP396 and GP276 epitopes of lymphocytic choriomeningitis virus (LCMV) in the mouse spleen. Because there are so many effector CD8 T cells in spleens of mice at the peak of the immune response, NP396- and GP276-pulsed targets are estimated to have very short half-lives of 2 and 14 min, respectively. After the effector numbers have diminished, i.e., in LCMV-immune mice, the half-lives become 48 min and 2.8 h for NP396- and GP276-expressing targets, respectively. Analysis of several alternative models demonstrates that the estimates of half-life times of peptide-pulsed targets are not affected when changes are made in the model assumptions. Our report provides a unifying framework to compare killing efficacies of CD8 T-cell responses specific to different viral and bacterial infections in vivo, which may be used to compare efficacies of various cytotoxic-T-lymphocyte-based vaccines.


2005 ◽  
Vol 79 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Margaret Chen ◽  
Christina Barnfield ◽  
Tanja I. Näslund ◽  
Marina N. Fleeton ◽  
Peter Liljeström

ABSTRACT While virus-infected dendritic cells (DCs) in certain instances have the capacity to activate naïve T cells by direct priming, cross-priming by DCs via the uptake of antigens from infected cells has lately been recognized as another important pathway for the induction of antiviral immunity. During cross-priming, danger and stranger signals play important roles in modulating immune responses. Analogous to what has been shown for other microbial infections, virally infected cells may contain several pathogen-associated molecular patterns that are recognized by Toll-like receptors (TLRs). We analyzed whether the efficient presentation of antigens derived from infected cells requires the usage of MyD88, which is a common adaptor molecule used by all TLRs. For this study, we used murine DCs that were wild type or deficient in MyD88 expression and fibroblasts that were infected with an alphavirus replicon to answer this question. Our results show that when DCs are directly infected, they are able to activate antigen-specific CD8+ T cells in a MyD88-independent manner. In contrast, a strict requirement of MyD88 for cross-priming was observed when virally infected cells were used as a source of antigen in vitro and in vivo. This indicates that the effects of innate immunity stimulation via the MyD88 pathway control the efficiency of cross-presentation, but not direct presentation or DC maturation, and have important implications in the development of cytotoxic T lymphocyte responses against alphaviral replicon infections.


Sign in / Sign up

Export Citation Format

Share Document