scholarly journals The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets

PLoS Genetics ◽  
2016 ◽  
Vol 12 (12) ◽  
pp. e1006466 ◽  
Author(s):  
Mark P. Keller ◽  
Pradyut K. Paul ◽  
Mary E. Rabaglia ◽  
Donnie S. Stapleton ◽  
Kathryn L. Schueler ◽  
...  
2011 ◽  
pp. 5-10
Author(s):  
Huu Dang Tran

The incretins are peptide hormones secreted from the gut in response to food. They increase the secretion of insulin. The incretin response is reduced in patients with type 2 diabetes so drugs acting on incretins may improve glycaemic control. Incretins are metabolised by dipeptidyl peptidase, so selectively inhibiting this enzyme increases the concentration of circulating incretins. A similar effect results from giving an incretin analogue that cannot be cleaved by dipeptidyl peptidase. Studies have identified other actions including improvement in pancreatic β cell glucose sensitivity and, in animal studies, promotion of pancreatic β cell proliferation and reduction in β cell apoptosis.


2021 ◽  
Author(s):  
Chieh-Hsin Yang ◽  
Danise Ann-Onda ◽  
Xuzhu Lin ◽  
Stacey Fynch ◽  
Shaktypreya Nadarajah ◽  
...  

Loss of functional β-cell mass is a key factor contributing to the poor glycaemic control in type 2 diabetes. However, therapies that directly target these underlying processes remains lacking. Here we demonstrate that gene expression of neuropeptide Y1 receptor and its ligand, neuropeptide Y, was significantly upregulated in human islets from subjects with type 2 diabetes. Importantly, the reduced insulin secretion in type 2 diabetes was associated with increased neuropeptide Y and Y1 receptor expression in human islets. Consistently, pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β-cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, Y1 receptor antagonist BIBO3304 treatment improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycaemic control in both high-fat-diet/multiple low dose streptozotocin- and db/db type 2 diabetic mice. Collectively, our results uncovered a novel causal link of increased islet NPY-Y1 receptor signaling to β-cell dysfunction and failure in human type 2 diabetes. These results further demonstrate that inhibition of Y1 receptor by BIBO3304 represents a novel and effective β-cell protective therapy for improving functional β-cell mass and glycaemic control in type 2 diabetes.


2014 ◽  
Vol 5 (3) ◽  
pp. 278-288 ◽  
Author(s):  
Amelia K. Linnemann ◽  
Mieke Baan ◽  
Dawn Belt Davis

Abstract Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Kay E Garnett ◽  
Philip Chapman ◽  
Julie A Chambers ◽  
Ian D Waddell ◽  
David S W Boam

The β-cell failure that characterises type 2 diabetes is likely to involve altered expression of many genes. We aimed to identify global changes in gene expression underlying β-cell dysfunction in pre-diabetic Zucker Diabetic Fatty rat islets, followed by functional studies to verify our findings. Gene expression profiles in islets from 6-week-old Zucker Diabetic Fatty rats and Zucker Fatty rat controls were analysed using Affymetrix microarrays. Totally 977 genes were found to be differentially regulated, comprising large groups of membrane and structural proteins, kinases, channels, receptors, transporters, growth factors and transcription factors. We are particularly interested in transcription factors, which can have profound effects on cellular function. Thus a subset of those with no role yet defined in the β-cell was selected for further study namely the immediate-early gene Egr-1, PAG608, rCGR19 and mSin3b. Tissue specificity of these factors varied but interestingly Egr-1 expression was highly enriched in the pancreatic islet. To determine a possible role of Egr-1 in the β-cell, Egr-1 expression in INS-1 cells was silenced using RNA interference (RNAi). Glucose-stimulated insulin secretion in these cells was then measured using ELISA and cell proliferation was measured by [3H]thymidine incorporation. Small interfering RNA (siRNA)-mediated silencing of the Egr-1 gene inhibited its induction by glucose but had no observable effect on glucose-stimulated insulin secretion. However, Egr-1 gene silencing did inhibit proliferation of INS-1 cells in a glucose-independent manner. Our studies have revealed a role for Egr-1 and suggest that reduced Egr-1 gene expression may contribute to decreased β-cell proliferation and the consequent β-cell failure observed in the later stages of type 2 diabetes.


2004 ◽  
Vol 24 (13) ◽  
pp. 5721-5732 ◽  
Author(s):  
Matthew G. Hartman ◽  
Dan Lu ◽  
Mi-Lyang Kim ◽  
Gary J. Kociba ◽  
Tala Shukri ◽  
...  

ABSTRACT Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes a member of the ATF/CREB family of transcription factors. However, the physiological significance of ATF3 induction by stress signals is not clear. In this report, we describe several lines of evidence supporting a role of ATF3 in stress-induced β-cell apoptosis. First, ATF3 is induced in β cells by signals relevant to β-cell destruction: proinflammatory cytokines, nitric oxide, and high concentrations of glucose and palmitate. Second, induction of ATF3 is mediated in part by the NF-κB and Jun N-terminal kinase/stress-activated protein kinase signaling pathways, two stress-induced pathways implicated in both type 1 and type 2 diabetes. Third, transgenic mice expressing ATF3 in β cells develop abnormal islets and defects secondary to β-cell deficiency. Fourth, ATF3 knockout islets are partially protected from cytokine- or nitric oxide-induced apoptosis. Fifth, ATF3 is expressed in the islets of patients with type 1 or type 2 diabetes, and in the islets of nonobese diabetic mice that have developed insulitis or diabetes. Taken together, our results suggest ATF3 to be a novel regulator of stress-induced β-cell apoptosis.


2004 ◽  
Vol 167 (6) ◽  
pp. 1123-1135 ◽  
Author(s):  
Thierry Brun ◽  
Isobel Franklin ◽  
Luc St-Onge ◽  
Anna Biason-Lauber ◽  
Eugene J. Schoenle ◽  
...  

The mechanism by which the β-cell transcription factor Pax4 influences cell function/mass was studied in rat and human islets of Langerhans. Pax4 transcripts were detected in adult rat islets, and levels were induced by the mitogens activin A and betacellulin. Wortmannin suppressed betacellulin-induced Pax4 expression, implicating the phosphatidylinositol 3-kinase signaling pathway. Adenoviral overexpression of Pax4 caused a 3.5-fold increase in β-cell proliferation with a concomitant 1.9-, 4-, and 5-fold increase in Bcl-xL (antiapoptotic), c-myc, and Id2 mRNA levels, respectively. Accordingly, Pax4 transactivated the Bcl-xL and c-myc promoters, whereas its diabetes-linked mutant was less efficient. Bcl-xL activity resulted in altered mitochondrial calcium levels and ATP production, explaining impaired glucose-induced insulin secretion in transduced islets. Infection of human islets with an inducible adenoviral Pax4 construct caused proliferation and protection against cytokine-evoked apoptosis, whereas the mutant was less effective. We propose that Pax4 is implicated in β-cell plasticity through the activation of c-myc and potentially protected from apoptosis through Bcl-xL gene expression.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4208 ◽  
Author(s):  
Wu ◽  
Ou ◽  
Chang ◽  
Lin ◽  
Pei ◽  
...  

: Background: The relationship between urokinase-type plasminogen activator (uPA) and the development of type 2 diabetes mellitus (T2DM) was investigated in the study by using mice and cell models, as well as patients with T2DM. Methods: In mice models, wild-type and uPA knockout (uPA-/-) BALB/c mice were used for induction of T2DM. In cell models, insulin secretion rate and β cell proliferation were assessed in normal and high glucose after treating uPA siRNA, uPA, or anti-uPA antibody. In our clinical study, patients with T2DM received an oral glucose-tolerance test, and the relationship between uPA and insulin secretion was assessed. Results: Insulin particles and insulin secretion were mildly restored one month after induction in wild-type mice, but not in uPA-/- mice. In cell models, insulin secretion rate and cell proliferation declined in high glucose after uPA silencing either by siRNA or by anti-uPA antibody. After treatment with uPA, β cell proliferation increased in normal glucose. In clinical study, patients with T2DM and higher uPA levels had better ability of insulin secretion than those with lower uPA levels. Conclusion: uPA may play a substantial role in insulin secretion, β cell regeneration, and progressive development of T2DM. Supplementation of uPA might be a novel approach for prevention and treatment of T2DM in the future.


2015 ◽  
Vol 112 (9) ◽  
pp. 2888-2893 ◽  
Author(s):  
Miles Berger ◽  
David W. Scheel ◽  
Hector Macias ◽  
Takeshi Miyatsuka ◽  
Hail Kim ◽  
...  

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic β cells, and variants in genes encoding several Gi-GPCRs—including the α-2a adrenergic receptor, ADRA2A—increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total β-cell mass, and the role of Gi-GPCRs in establishing β-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates β-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic β cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal β cells decreased β-cell proliferation, reduced adult β-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal β-cell proliferation, increased adult β-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult β cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of β-cell replication. These studies link Gi-GPCR signaling to β-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase β-cell mass in patients with diabetes.


Author(s):  
Zhibin Cao ◽  
Fuwang Yao ◽  
Yuqin Lang ◽  
Xueqiang Feng

Abstract Objective The purpose of this study was to evaluate the clinical value and biological function of long non-coding RNA (lncRNA) LINC-P21 in type 2 diabetes mellitus (T2DM), and explore the underlying mechanisms. Methods The expression of LINC-P21 was estimated using quantitative real-time PCR. The functional role of LINC-P21 was explored by gain- and loss-of-function experiments. INS-1 cell proliferation was analyzed using a cell counting kit-8 (CCK-8)assay, and the glucose-stimulated insulin secretion was measured using an ELISA kit. The miRNAs that might be sponged by LINC-P21 were analyzed, and the subsequent target genes were predicted and assessed in INS-1 cells. Results Serum expression of LINC-P21 was elevated in T2DM patients, which was correlated with fasting blood glucose levels and disease diagnosis. The glucose-stimulated insulin secretion and the proliferation of INS-1 cells were enhanced by LINC-P21 knockdown, but the overexpression of LINC-P21 led to opposite effects. miR-766-3p could be directly inhibited by LINC-P21 in INS-1 cells and reverse the effects of LINC-P21 on β-cell function. Additionally, NR3C2 was determined as a target of miR-766-3p, which could be positively regulated by LINC-P21 and had same effects with LINC-P21 on INS-1 cell proliferation and insulin secretion. Conclusion All the data demonstrated that serum elevated LINC-P21 and decreased miR-766-3p serve as candidate diagnostic biomarkers in T2DM patients. LINC-P21 acts as a potential regulator in insulin secretion and proliferation of pancreatic β-cells through targeting miR-766-3p to upregulate NR3C2.


Sign in / Sign up

Export Citation Format

Share Document