scholarly journals Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae

PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009527
Author(s):  
Jun Yang ◽  
Hao Guo ◽  
Nan-Ji Jiang ◽  
Rui Tang ◽  
Guo-Cheng Li ◽  
...  

Glucosinolates are token stimuli in host selection of many crucifer specialist insects, but the underlying molecular basis for host selection in these insects remains enigmatic. Using a combination of behavioral, electrophysiological, and molecular methods, we investigate glucosinolate receptors in the cabbage butterfly Pieris rapae. Sinigrin, as a potent feeding stimulant, elicited activity in larval maxillary lateral sensilla styloconica, as well as in adult medial tarsal sensilla. Two P. rapae gustatory receptor genes PrapGr28 and PrapGr15 were identified with high expression in female tarsi, and the subsequent functional analyses showed that Xenopus oocytes only expressing PrapGr28 had specific responses to sinigrin; when ectopically expressed in Drosophila sugar sensing neurons, PrapGr28 conferred sinigrin sensitivity to these neurons. RNA interference experiments further showed that knockdown of PrapGr28 reduced the sensitivity of adult medial tarsal sensilla to sinigrin. Taken together, we conclude that PrapGr28 is a gustatory receptor tuned to sinigrin in P. rapae, which paves the way for revealing the molecular basis of the relationships between crucifer plants and their specialist insects.

mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Ningning Fu ◽  
Ming Wang ◽  
Lixiang Wang ◽  
Youqing Luo ◽  
Lili Ren

ABSTRACT Amylostereum areolatum is the symbiotic fungus of the Eurasian woodwasp, Sirex noctilio, a globally invasive species. The mutualistic symbiont is associated with the woodwasp, assisting the damage process and providing nutrition for its insect partners. Colonization and growth of A. areolatum have essential impacts on the development and spread of S. noctilio, though the mechanism of interaction between the two has been poorly described. In this study, the first genome of this symbiotic fungus was sequenced, assembled, and annotated. The assembled A. areolatum genome was 57.5 Mb (54.51% GC content) with 15,611 protein-coding genes. We identified 580 carbohydrate-active enzymes (CAZymes), 661 genes associated with pathogen-host interactions, and 318 genes encoding transport proteins in total. The genome annotation revealed 10 terpene/phytoene synthases responsible for terpenoid biosynthesis, which could be classified into three clades. Terpene synthase gene clusters in clade II were conserved well across Russulales. In this cluster, genes encoding mevalonate kinase (MK), EGR12 (COG1557), and nonplant terpene cyclases (cd00687) were the known biosynthesis and regulatory genes. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus. The wasps might protect the fungus before it was introduced into a suitable host substrate by oviposition, while the fungus would provide S. noctilio with a suitable environment and nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis. IMPORTANCE Sirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 611
Author(s):  
Patamarerk Engsontia ◽  
Chutamas Satasook

The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species’ complex chemoreception, which is an important step toward developing more effective control methods.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 801
Author(s):  
Joyce Y. Buikhuisen ◽  
Patricia M. Gomez Barila ◽  
Arezo Torang ◽  
Daniëlle Dekker ◽  
Joan H. de Jong ◽  
...  

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.


Parasitology ◽  
1995 ◽  
Vol 111 (4) ◽  
pp. 531-536 ◽  
Author(s):  
A. Saul

SUMMARYA stochastic simulation model of the transmission and maintenance of genetic heterogeneity in the absence and presence of external selection pressures is presented for polygamous intestinal helminths such as Ascaris. The model assumes that the density distribution of the adult parasites is highly aggregated and that density-dependent effects on fecundity are important. The model gives rise to stable infection rates in the host. Where the parasite population contains genetic heterogeneity, with the exception of stochastic fluctuations which models genetic drift, the ratio of the different alleles remained constant over extended periods of time. This result contrasts with that of an earlier analytical model (Anderson, R. M., May, M. R. & Gutpa S. (1989) Parasitology 99, S59–S79), in which uneven mating probabilities for the different combinations of worm possible in a host was postulated to inevitably lead to fixation of the most abundant allele. New results suggest that in spite of the restricted choice of mating available to a worm in the confines of a host, selection pressure always leads to enrichment of the parasites carrying resistant alleles.


Biology Open ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. bio055632

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Komal Panchal is first author on ‘Miro, a Rho GTPase genetically interacts with Alzheimer's disease-associated genes (Tau, Aβ42 and Appl) in Drosophila melanogaster’, published in BiO. Komal is a PhD student in the lab of Dr Anand K. Tiwari at the Institute of Advanced Research (IAR), Koba Institutional Area, Gujarat, India, investigating the possible molecular basis of Alzheimer's disease.


1962 ◽  
Vol 53 (2) ◽  
pp. 241-256 ◽  
Author(s):  
E. S. Brown

A number of observations were made on parasites of certain Pentatomoids (sunn pest) attacking wheat in Middle East countries, during the course of other work on these pests. The principal host species studied were Eurygaster integriceps Put., E. maura (L.) and Aelia rostrata Boh. The data concern both Dipterous (Tachinid) endoparasites of the adult bugs, and also Hymenopterous (Scelionid) egg-parasites; the observations were made principally in central Turkey, and in the Varamine district of Iran. A few observations on predators were made also.The data concerning Tachinids consist of host records for six species of parasites. In no case observed by the author did these parasites appear to be of great importance in reducing the numbers of sunn pest; the same is true of the few instances of predators recorded.Observations were made on six species of Scelionid egg-parasites (five species of Asolcus and one of Hadronotus), five of which were bred from eggs of four species of Pentatomoid hosts collected in the field. The species concerning which the most comprehensive data were obtained were Asolcus rufiventris (Mayr), A. semistriatus (Nees) and A. vassilievi (Mayr). Egg-parasites are well known to be more efficacious in reducing sunn-pest populations, and A. semistriatus has been extensively used in Iran as a biological control agent. The data obtained enabled some ideas which are of importance for the use of egg-parasites in biological control to be formed and discussed. These concern principally (a) the susceptibilities of different hosts to parasitisation; (b) host selection by parasites; (c) the selection of a species of parasite most suitable for biological control in a particular area.


Sign in / Sign up

Export Citation Format

Share Document