sirex noctilio
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 37)

H-INDEX

28
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2461
Author(s):  
Yi-Ni Li ◽  
En-Hua Hao ◽  
Han Li ◽  
Xiao-Hui Yuan ◽  
Peng-Fei Lu ◽  
...  

Sirex noctilio, a major forestry quarantine pest, has spread rapidly and caused serious harm. However, existing methods still need to be improved because its olfactory interaction mechanisms are poorly understood. In order to study the role of male-specific protein SnocOBP7 in the protein–ligand interactions, we selected it as the object of computational simulation and analysis. By docking it with 11 ligands and evaluating free binding energy decomposition, the three best binding ligands were found to be female sex pheromones ((Z)-7-heptacosene and (Z)-7-nonacosene) and symbiotic fungal volatiles ((−)-globulol). Binding mode analysis and computational alanine scanning suggested that five residues play key roles in the binding of each female sex pheromone to SnocOBP7, whereas two residues play key roles in (−)-globulol binding. Phe108 and Leu36 may be the crucial sites via which SnocOBP7 binds female sex pheromones, whereas Met40 may regulate the courtship behavior of males, and Leu61 may be related to mating and host finding. Our studies predicted the function of SnocOBP7 and found that the interaction between SnocOBP7 and pheromone is a complex process, and we successfully predicted its binding key amino-acid sites, providing a basis for the development of new prevention and control methods relying on female sex pheromones and symbiotic fungi.


2021 ◽  
Vol 54 ◽  
pp. 101108
Author(s):  
Hajar Faal ◽  
Dong H. Cha ◽  
Ann E. Hajek ◽  
Stephen A. Teale
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12266
Author(s):  
Hajar Faal ◽  
Peter J. Silk ◽  
Peter D. Mayo ◽  
Stephen A. Teale

Background Ibalia leucospoides (Hymenoptera: Ibaliidae) is a larval parasitoid that has been widely introduced as a biological control agent for the invasive woodwasp,Sirex noctilio (Hymenoptera: Siricidae) in the Southern Hemisphere. In this study, the courtship behavior and identificaion of sex pheromones are described for I. leucospoides under laboratory conditions. Methods For courtship behavior, both sexes were observed in a wire mesh observation cylinder (75 cm length ×10 cm diameter) for 15 minutes. The female body washes were analyzed using Gas Chromatography- Electroantennographic Detection (GC-EAD). Then the EAD-active compounds were tentatively identified using GC-Mass Spectrometry (GC-MS) and examined in olfactometer assays. Results The courtship behavior included rhythmic lateral movements, mounting, head-nodding cycles in males, and wing-fanning in females. GC-EAD analysis of female body washes with male antennae revealed seven compounds which elicited antennal responses, four of which are straight-chain alkanes (C23, C25, C26, and C27). The identities of these alkanes were confirmed by matching the retention times, mass spectra, and male antennal activity to those of commercially obtained chemicals. In olfactometer assays, a blend of the four straight-chain alkanes was attractive to I. leucospoides males, and there was no response to blends that lacked any of these four compounds. Female body wash was no more attractive than the four-component blend. The ratios of EAD-active components differ between hydrocarbon profiles from males and females. Conclusion This study is the first investigation of cuticular hydrocarbons in the family Ibaliidae. It provides evidence that the ubiquitous alkanes (C23, C25, C26, and C27) in sex-specific ratios attract I. leucospoides males.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixiang Wang ◽  
Chunchun Li ◽  
Youqing Luo ◽  
Lili Ren ◽  
Ning Lv ◽  
...  

AbstractInteractions between the decline of Mongolian pine woodlands and fungal communities and invasive pests in northeastern China are poorly understood. In this study, we investigated the fungal communities occurring in three tree samples: the woodwasp Sirex noctilio infested, healthy uninfested and unhealthy uninfested Mongolian pine trees. We analyzed the relationships of the Mongolian pine decline with fungal infection and woodwasp infestation. Twenty-six fungal species were identified from the sampled trees. Each tree sample harbored a fungal endophyte community with a unique structure. Pathogenic fungi richness was four times higher in infested and unhealthy un-infested trees compared to that in healthy uninfested trees. Sphaeropsis sapinea was the most dominant pathogenic fungus in the sampled Mongolian pine trees. The number of S. noctilio was higher than native bark beetles in the declining Mongolian pine trees. The invasion of the woodwasp appeared to be promoted by the fungal infection in the Mongolian pine trees. The incidence of S. noctilio infestation was higher in the fungi infected trees (83.22%) than those without infection (38.72%). S. sapinea population exhibited positive associations with within-tree colonization of S. noctilio and bark beetle. Collectively, these data indicate that the fungal disease may have caused as the initial reason the decline of the Mongolian pine trees, and also provided convenient conditions for the successful colonization of the woodwasp. The woodwasps attack the Mongolian pine trees infected by fungi and accelerated its decline.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quentin Guignard ◽  
Johannes Spaethe ◽  
Bernard Slippers ◽  
Martin Strube-Bloss ◽  
Jeremy D. Allison

AbstractA precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawflies, woodwasps, horntails). Most apocritan species possess three different photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied the Symphyta Sirex noctilio, which belongs to the superfamily Siricoidea, a closely related group of the Apocrita suborder. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identified three opsins in the genome, homologous to the hymenopteran green or long-wavelength sensitive (LW) LW1, LW2 and ultra-violet sensitive (UV) opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a blue or short-wavelength sensitive (SW) homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV-green dichromate.


2021 ◽  
Vol 67 (2) ◽  
pp. 85-90
Author(s):  
Jan Liška ◽  
Miloš Knížek ◽  
Adam Véle

Abstract Pinus sylvestris is an important production tree. In recent years, there has been a sharp increase in the mortality of pine trees due to insect pests. It is obvious that some pests profit from climatic changes, increase their aggressiveness and spread to new localities. The study aimed to investigate the spectrum of more abundant insect pest species in pine plantations of Czechia. The occurrence of species and intensity of their infestation were studied at 77 localities situated in six regions. Any abundant foliophagous insect species were noticed. Bark beetles and wood-boring insects were found to be prevalent. Namely, Ips acuminatus, Ips sexdentatus, Phaenops cyanea and Sirex noctilio seem to be the most dangerous. These species are now better competitors than species previously considered as main pests. Their aggressiveness, expansion to new areas and interspecies co-occurrence are alarming. Due to the advancing climate change, pine mortality due to bark beetles and wood-boring pests will probably continue to increase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiale Li ◽  
Chengcheng Li ◽  
Ming Wang ◽  
Lixiang Wang ◽  
Xiaobo Liu ◽  
...  

The European woodwasp, Sirex noctilio Fabricius, is a major invasive quarantine pest that attacks and kills pine trees outside of its native range. Insect gut structure and gut microbiota play crucial roles in various life activities. Despite a few reports in nutrition and survival, an extensive study on the S. noctilio larval gut microbiome is lacking. We studied the gut structure using a stereo microscope and used high throughput sequencing of the bacterial 16S rRNA genes and fungal internal transcribed spacer 2 (ITS2) regions to investigate gut microbiota in different developmental stages of S. noctilio, including larvae, adults, and larval frass. We used PICRUSt2 to predict the functional profiles. The larval gut was thin and thread-like from the oral cavity to the anus, carrying few xylem particles in the crop. Pseudomonas, Ralstonia, and Burkholderia s.l were the dominant bacteria in the guts of larvae, adults, and frass, respectively. Even though Pseudomonas was the most abundant among all bacteria, Zoogloea, Ruminobacter, and Nitrosospira, which might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut indicating their possible role in the growth and development of larvae in pine tree xylem. Fungal communities did not change significantly across different developmental stages or the frass. Amylostereum was dominant in the woodwasp’s larval gut. Functional prediction of bacterial and fungal communities revealed that they may encod enzymes involved in degrading lignocellulose and fixing nitrogen. Ours is the first study that compares gut microbial communities present in S. noctilio larvae, adults, and frass. This study could provide an understanding of larval nutrient acquisition in nutrient-deficient host xylem to some extent. Our study may unlock novel strategies for the development of pest management approaches based on interfering with the gut microbiota and restricting their role in larval survival and development.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Bing Guo ◽  
Enhua Hao ◽  
Haili Qiao ◽  
Jingzhen Wang ◽  
Weiwei Wu ◽  
...  

Abstract Background The woodwasp Sirex noctilio Fabricius is a major quarantine pest worldwide that was first discovered in China in 2013 and mainly harms Pinus sylvestris var. mongolica Litv.. S. nitobei Matsumura is a native species in China and is closely related to S. noctilio. Recently, the two woodwasps species were found attacking the P. sylvestris var. mongolica Litv in succession. The olfactory system is the foundation of insect behavior. Olfactory genes were identified through antennal transcriptome analysis. The expression profiles odorant binding proteins (OBPs) were analyzed with RT-qPCR. Results From our transcriptome analysis, 16 OBPs, 7 chemosensory proteins (CSPs), 41 odorant receptors (ORs), 8 gustatory receptors (GRs), 13 ionotropic receptors (IRs), and one sensory neuron membrane protein (SNMP) were identified in S. noctilio, while 15 OBPs, 6 CSPs, 43 ORs, 10 GRs, 16 IRs, and 1 SNMP were identified in S. nitobei. Most of the olfactory genes identified in two species were homologous. However, some species-specific olfactory genes were identified from the antennal transcriptomes, including SnocOBP13, SnocCSP6, SnocOR26, SnocGR2, SnocIR7 in S. noctilio and SnitGR9, SnitGR11, SnitIR17 in S. nitobei. In total, 14 OBPs were expressed primarily in the antennae. SnocOBP9 and SnitOBP9, identified as PBP homologues, were sex-biased expression in two siricid, but with different pattern. SnocOBP11 and SnitOBP11 were highly expressed in antennae and clearly expressed in external genitalia. SnocOBP7 and SnitOBP7 were highly expressed in male genitalia. SnocOBP3 and SnocOBP10 were highly expressed in female genitalia and male heads, while SnitOBP3 and SnitOBP10 did not show obvious tissue bias. Conclusion We analyzed 86 and 91 olfactory genes from S. noctilio and S. nitobei, respectively. Most of the olfactory genes identified were homologous, but also some species-specific olfactory genes were identified, which indicated the similarities and differences of the molecular mechanisms between the two closely-related species. Different expression in the antennae, external genitals or heads, exhibiting an obvious sex bias, suggested their different role in recognizing sex pheromones or plant volatiles. Species-specific expression for several OBPs genes may suggest that they strengthened or lost their original function during species differentiation, resulting in olfactory differences between the two species.


2021 ◽  
Author(s):  
Quentin Guignard ◽  
Johannes Spaethe ◽  
Bernard Slippers ◽  
Martin Strube-Bloss ◽  
Jeremy D. Allison

Abstract A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawflies, woodwasps, horntails). Most apocritan species possess three different photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied Sirex noctilio, which belongs to the superfamily Siricoidea, a sister group of the Apocrita. Our aim was to i) identify the photoreceptor types of the compound eye by electroretinography (ERG), ii) characterise the visual opsins genes of S. noctilio by genomic comparisons and phylogenetic analyses and iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identified three opsins in the genome, homologous to the hymenopteran LW1, LW2 and UV opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a SW-homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV-green dichromate.


2021 ◽  
Author(s):  
Joséphine Queffelec ◽  
Jeremy D. Allison ◽  
Bernard Slippers ◽  
Jaco M. Greeff

ABSTRACTWhile male mate choice in insects is a widely accepted concept, there is still limited evidence showing that lek formation is compatible with the evolution of male mate choice. In the woodwasp Sirex noctilio, males form leks that are used by females to select a mate. However, males have been observed to ignore certain females, suggesting the presence of male mate choice despite the presence of a lek mating system. In this study we demonstrate that males only attempt to mate with certain females. To understand the criteria used by males and females to select a mate, we also tested the effect of age, size, and male to female size ratio on the number of mating attempts made by males and on female receptivity. We demonstrate that size and age play a role in both male and female mate choice. Our results suggest that males must reach sexual maturity after emergence and are neither receptive nor attractive to females during the first few days of their lives. We also show that older females become less attractive to males, suggesting that female S. noctilio switch to a strict host location phase sometime after emergence. Our results show that male and female size, and the ratio between them, play a role in mate choice. While larger males are more motivated to mate, their large size can physically prevent them from mating with small females. Small females are also more attractive and more receptive to males, consistent with the presence of convenience polyandry in S. noctilio.


Sign in / Sign up

Export Citation Format

Share Document