scholarly journals CD8low T cells expanded following acute Trypanosoma cruzi infection and benznidazole treatment are a relevant subset of IFN-γ producers

2020 ◽  
Vol 14 (12) ◽  
pp. e0008969
Author(s):  
Alessandro Marins-Dos-Santos ◽  
Bianca Perdigão Olivieri ◽  
Rafaella Ferreira-Reis ◽  
Juliana de Meis ◽  
Andrea Alice Silva ◽  
...  

CD8 T cells are regarded as pivotal players in both immunoprotection and immunopathology following Trypanosoma cruzi infection. Previously, we demonstrated the expansion of CD8+ T lymphocytes in the spleen of T. cruzi-infected mice under treatment with benznidazole (N-benzyl-2-nitroimidazole acetamide; Bz), a drug available for clinical therapy. This finding underlies the concept that the beneficial effects of Bz on controlling acute T. cruzi infection are related to a synergistic process between intrinsic trypanocidal effect and indirect triggering of the active immune response. In the present study, we particularly investigated the effect of Bz treatment on the CD8+ T cell subset following T. cruzi infection. Herein we demonstrated that, during acute T. cruzi infection, Bz treatment reduces and abbreviates the parasitemia, but maintains elevated expansion of CD8+ T cells. Within this subset, a remarkable group of CD8low cells was found in both Bz-treated and non-treated infected mice. In Bz-treated mice, early pathogen control paralleled the lower frequency of recently activated CD8low cells, as ascertained by CD69 expression. However, the CD8low subset sustains significant levels of CD44highCD62Llow and CD62LlowT-bethigh effector memory T cells, in both Bz-treated and non-treated infected mice. These CD8low cells also comprise the main group of spontaneous interferon (IFN)-γ-producing CD8+ T cells. Interestingly, following in vitro anti-CD3/CD28 stimulation, CD8+ T cells from Bz-treated T. cruzi-infected mice exhibited higher frequency of IFN-γ+ cells, which bear mostly a CD8low phenotype. Altogether, our results point to the marked presence of CD8low T cells that arise during acute T. cruzi infection, with Bz treatment promoting their significant expansion along with a potential effector program for high IFN-γ production.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiongli Wu ◽  
Shuangpeng Kang ◽  
Jun Huang ◽  
Shunqiao Wan ◽  
Binyan Yang ◽  
...  

Tissue-resident memory T cells (TRM) are different from effector memory T cells (TEM) and central memory T cells (TCM) and contribute to the protective immunity against local challenges. Currently, we found that CD4+ and CD8+ TRM cells in the nasal mucosa, trachea, lungs, and lavage fluids were heterogeneous on the expression of CD69 and CD103 as well as the production of cytokines including IFN-γ, IL-2, and TNF-α. After intranasal vaccination of mice with BCG, respiratory tissues expressed higher levels of the chemokine CXCL16 and TRM cells expressed CXCR6 to CXCL16. In addition, antigen-specific CD4+ and CD8+ TRM cells expressed cytokines following the stimulation with BCG and persisted in the nasal mucosa, trachea, and lungs for more than a hundred days. At the same time, mice were infected intranasally with live BCG and the results showed that vaccinated mice cleared up live BCG faster than nonvaccinated mice in the respiratory system. Taken together, our data demonstrated that intranasal vaccination of mice with BCG could induce antigen-specific CD4+ and CD8+ TRM cells in the respiratory system and have the ability to provide protection against pulmonary reinfection.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3163-3163
Author(s):  
Anne Richter ◽  
Patricia Marschall ◽  
Marie Mohn ◽  
Uwe Odenthal ◽  
Silke Gösling ◽  
...  

Abstract Short-term restimulation assays combined with the analysis of effector function, in particular the detection of cytokine production, are useful tools for the analysis and isolation of antigen-specific T cells. Until now, restimulations with soluble protein antigens failed to efficiently reactivate CD8+ T cells. We have developed a recombinant protein of the immunodominant cytomegalovirus (CMV) matrix protein pp65 for in vitro restimulation of pp65-specific CD4+ as well as CD8+ T cells. The efficiency of the CMV pp65 - Recombinant Protein to reactivate pp65-experienced CD4+ and CD8+ T cells and the specificity of the restimulated T cells were analysed. PBMC from CMV seropositive donors were restimulated with CMV pp65 - Recombinant Protein or a complete pool of overlapping pp65 peptides. Afterwards T cells were analysed for intracellular IFN-γ production by flow cytometry. Interestingly, we observed that stimulation with CMV pp65 - Recombinant Protein results in IFN-γ production in CD4+ as well as CD8+ T cells with frequencies comparable to that using the peptide pool as antigen (n=17). In contrast, upon stimulation of PBMC from CMV seronegative donors with CMV pp65 - Recombinant Protein neither IFN-γ nor TNF-α were detectable in T cells (n=6). Furthermore, we tested the specificity of CMV pp65 - Recombinant Protein-reactive CD4+ and CD8+ T cells. Therefore, IFN-γ-producing T cells were magnetically isolated after short-term stimulation with pp65 using the IFN-γ cytokine secretion assay and expanded for 7 days. Subsequently, the isolated and expanded CD4+ and CD8+ T cells were restimulated with pp65 peptide pool. More than 80 % of the CD4+ and CD8+ T cells produced IFN-γ and more than 80 % of the CD8+ T cells were positively stained with MHC class I/pp65 tetramers. These results demonstrate that CMV pp65 - Recombinant Protein efficiently and specifically reactivates pp65-experienced CD4+ as well as CD8+ T cells. Therefore, CMV pp65 - Recombinant Protein is a useful antigen for the detection and isolation of pp65-experienced CD4+ and CD8+ effector/memory T cells.


2012 ◽  
Vol 42 (11) ◽  
pp. 2913-2924 ◽  
Author(s):  
Saranya Sridhar ◽  
Shaima Begom ◽  
Alison Bermingham ◽  
Thedi Ziegler ◽  
Kim L. Roberts ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5008-5016 ◽  
Author(s):  
Sophie Guia ◽  
Céline Cognet ◽  
Ludovic de Beaucoudrey ◽  
Marlowe S. Tessmer ◽  
Emmanuelle Jouanguy ◽  
...  

Abstract Natural killer (NK) cells have been originally defined by their “naturally occurring” effector function. However, only a fraction of human NK cells is reactive toward a panel of prototypical tumor cell targets in vitro, both for the production of interferon-γ (IFN-γ) and for their cytotoxic response. In patients with IL12RB1 mutations that lead to a complete IL-12Rβ1 deficiency, the size of this naturally reactive NK cell subset is diminished, in particular for the IFN-γ production. Similar data were obtained from a patient with a complete deficit in IL-12p40. In addition, the size of the subset of effector memory T cells expressing CD56 was severely decreased in IL-12Rβ1– and IL-12p40–deficient patients. Human NK cells thus require in vivo priming with IL-12/23 to acquire their full spectrum of functional reactivity, while T cells are dependent upon IL-12/23 signals for the differentiation and/or the maintenance of CD56+ effector memory T cells. The susceptibility of IL-12/23 axis–deficient patients to Mycobacterium and Salmonella infections in combination with the absence of mycobacteriosis or salmonellosis in the rare cases of human NK cell deficiencies point to a role for CD56+ T cells in the control of these infections in humans.


Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6209-6219 ◽  
Author(s):  
Kathryn W. Juchem ◽  
Britt E. Anderson ◽  
Cuiling Zhang ◽  
Jennifer M. McNiff ◽  
Anthony J. Demetris ◽  
...  

Abstract Effector memory T cells (TEM) do not cause graft-versus-host disease (GVHD), though why this is has not been elucidated. To compare the fates of alloreactive naive (TN) or memory (TM) T cells, we developed a model of GVHD in which donor T cells express a transgene-encoded TCR specific for an antigenic peptide that is ubiquitously expressed in the recipient. Small numbers of naive TCR transgenic (Tg) T cells induced a robust syndrome of GVHD in transplanted recipients. We then used an established method to convert TCR Tg cells to TM and tested these for GVHD induction. This allowed us to control for the potentially different frequencies of alloreactive T cells among TN and TM, and to track fates of alloreactive T cells after transplantation. TEM caused minimal, transient GVHD whereas central memory T cells (TCM) caused potent GVHD. Surprisingly, TEM were not inert: they, engrafted, homed to target tissues, and proliferated extensively, but they produced less IFN-γ and their expansion in target tissues was limited at later time points, and local proliferation was reduced. Thus, cell-intrinsic properties independent of repertoire explain the impairment of TEM, which can initiate but cannot sustain expansion and tissue damage.


2015 ◽  
Vol 308 (5) ◽  
pp. C362-C371 ◽  
Author(s):  
Konstantinos A. Papadakis ◽  
James Krempski ◽  
Jesse Reiter ◽  
Phyllis Svingen ◽  
Yuning Xiong ◽  
...  

KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4+ T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8+ T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10−/− CD8+ T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8+ T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8+ T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8+ T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8+ T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10−/− CD8+ T cells and a higher percentage of IFN-γ-producing CD8+ T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8+ T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial.


1999 ◽  
Vol 67 (8) ◽  
pp. 3855-3863 ◽  
Author(s):  
Mauricio M. Rodrigues ◽  
Marcelo Ribeirão ◽  
Vera Pereira-Chioccola ◽  
Laurent Renia ◽  
Fabio Costa

ABSTRACT Immunization with a plasmid DNA containing the gene encoding the catalytic domain of trans-sialidase (TS) elicits protective immune responses against experimental Trypanosoma cruziinfection. As several studies provided strong evidence that during infection CD4 Th1 and CD8 T cytotoxic type 1 (Tc1) cells are important factors in host resistance, the present study was designed to evaluate which T-cell types were activated in DNA-vaccinated BALB/c mice. We found that bulk cells from DNA-immunized mice had CD4 and CD8 T cells that produced gamma interferon (IFN-γ) but not interleukin-4 (IL-4) or IL-10. To characterize the TS-specific T cells at the clonal level, we generated CD4 and CD8 clones. We obtained cytotoxic CD4 clones of the Th1 type that secreted large amounts of IFN-γ but not IL-4 or IL-10. Unexpectedly, we obtained other CD4 clones with a Th2 phenotype, secreting IL-4 and IL-10 but not IFN-γ. All CD8 clones were cytotoxic and produced IFN-γ. IL-4 and IL-10 were not secreted by these cells. Using synthetic peptides, we determined a CD8 epitope recognized by several clones as being represented by amino acids IYNVGQVSI. The antiparasitic activity of a CD4 Th1 and a CD8 Tc1 clone was assessed in vitro. CD4 or CD8 T cells significantly inhibited T. cruzidevelopment in infected macrophages or fibroblasts, respectively. We concluded that DNA vaccine efficiently generates potentially protective CD4 Th1 and CD8 Tc1 cells specific for a T. cruzi antigen, therefore reinforcing the possibility of using this strategy for developing a preventive or therapeutic vaccine against Chagas’ disease.


Sign in / Sign up

Export Citation Format

Share Document