scholarly journals A Critical Role for FBXW8 and MAPK in Cyclin D1 Degradation and Cancer Cell Proliferation

PLoS ONE ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. e128 ◽  
Author(s):  
Hiroshi Okabe ◽  
Sang-Hyun Lee ◽  
Janyaporn Phuchareon ◽  
Donna G. Albertson ◽  
Frank McCormick ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guanwen Zhou ◽  
Keqiang Yan ◽  
Jikai Liu ◽  
Lijian Gao ◽  
Xianzhou Jiang ◽  
...  

AbstractThe aberrant expression of fat mass and obesity-associated protein (FTO) has been confirmed to be associated with a variety of cancers and participates in the regulation of multiple biological behaviours. FTO plays an oncogenic role in bladder cancer, but few studies have focused on how FTO promotes bladder cancer progression by regulating miRNA synthesis. Here, we confirmed that FTO expression was significantly increased in bladder cancer and was associated with a poor prognosis. FTO overexpression promoted bladder cancer cell proliferation, whereas FTO knockdown inhibited bladder cancer cell proliferation. We also demonstrated that FTO promoted bladder cancer cell proliferation via the FTO/miR-576/CDK6 pathways. Taken together, our work revealed that FTO plays a critical role in bladder cancer and could be a potential diagnostic or prognostic biomarker for this disease.


2020 ◽  
Vol 21 (10) ◽  
pp. 3586 ◽  
Author(s):  
Yoo-Duk Choi ◽  
Ji-Yeon Jung ◽  
Minwoo Baek ◽  
Sheema Khan ◽  
Peter I. Song ◽  
...  

Pancreatic cancer is the worst exocrine gastrointestinal cancer leading to the highest mortality. Recent studies reported that aberrant expression of apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is involved in uncontrolled cell growth. However, the molecular mechanism of APE1 biological role remains unrevealed in pancreatic cancer progression. Here, we demonstrate that APE1 accelerates pancreatic cancer cell proliferation through glial cell line-derived neurotrophic factor (GDNF)/glial factor receptor α1 (GFRα1)/Src/ERK axis-cascade signaling. The proliferation of endogenous APE1 expressed-MIA PaCa-2, a human pancreatic carcinoma cell line, was increased by treatment with GDNF, a ligand of GFRα1. Either of downregulated APE1 or GFRα1 expression using small interference RNA (siRNA) inhibited GDNF-induced cancer cell proliferation. The MEK-1 inhibitor PD98059 decreased GDNF-induced MIA PaCa-2 cell proliferation. Src inactivation by either its siRNA or Src inhibitor decreased ERK-phosphorylation in response to GDNF in MIA PaCa-2 cells. Overexpression of GFRα1 in APE1-deficient MIA PaCa-2 cells activated the phosphorylation of Src and ERK. The expression of both APE1 and GFRα1 was gradually increased as progressing pancreatic cancer grades. Our results highlight a critical role for APE1 in GDNF-induced pancreatic cancer cell proliferation through APE1/GFRα1/Src/ERK axis-cascade signaling and provide evidence for future potential therapeutic drug targets for the treatment of pancreatic cancer.


2008 ◽  
Vol 410 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Chengfeng Yang ◽  
Eric A. Klein ◽  
Richard K. Assoian ◽  
Marcelo G. Kazanietz

Accumulating evidence indicates that heregulins, EGF (epidermal growth factor)-like ligands, promote breast cancer cell proliferation and are involved in the progression of breast cancer towards an aggressive and invasive phenotype. However, there is limited information regarding the molecular mechanisms that mediate these effects. We have recently established that HRG (heregulin β1) promotes breast cancer cell proliferation and migration via cross-talk with EGFR (EGF receptor) that involves the activation of the small GTPase Rac1. In the present paper we report that Rac1 is an essential player for mediating the induction of cyclin D1 and p21Cip1 by HRG in breast cancer cells. Inhibition of Rac function by expressing either the Rac-GAP (GTPase-activating protein) β2-chimaerin or the dominant-negative Rac mutant N17Rac1, or Rac1 depletion using RNAi (RNA interference), abolished the cyclin D1 and p21Cip1 induction by HRG. Interestingly, the proliferative effect of HRG was impaired not only when the expression of Rac1 or cyclin D1 was inhibited, but also when cells were depleted of p21Cip1 using RNAi. Inhibition of EGFR, PI3K (phosphoinositide 3-kinase; kinases required for Rac activation by HRG) or MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] also blocked the up-regulation of cyclin D1 and p21Cip1 by HRG. In addition, we found that HRG activates NF-κB (nuclear factor κB) in a Rac1- and MEK-dependent fashion, and inhibition of NF-κB abrogates cyclin D1/p21Cip1 induction and proliferation by HRG. Taken together, these findings establish a central role for Rac1 in the control of HRG-induced breast cancer cell-cycle progression and proliferation through up-regulating the expression of cyclin D1 and p21Cip1.


2014 ◽  
Vol 35 (8) ◽  
pp. 1863-1871 ◽  
Author(s):  
H. Zhang ◽  
X. Zhang ◽  
S. Ji ◽  
C. Hao ◽  
Y. Mu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document