scholarly journals HYAL1 and HYAL2 Inhibit Tumour Growth In Vivo but Not In Vitro

PLoS ONE ◽  
2008 ◽  
Vol 3 (8) ◽  
pp. e3031 ◽  
Author(s):  
Fuli Wang ◽  
Elvira V. Grigorieva ◽  
Jingfeng Li ◽  
Vera N. Senchenko ◽  
Tatiana V. Pavlova ◽  
...  
2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


2012 ◽  
Vol 20 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Joanna M Day ◽  
Paul A Foster ◽  
Helena J Tutill ◽  
Fabien Schmidlin ◽  
Christopher M Sharland ◽  
...  

17β-Hydroxysteroid dehydrogenases (17β-HSDs) catalyse the 17-position reduction/oxidation of steroids. 17β-HSD type 3 (17β-HSD3) catalyses the reduction of the weakly androgenic androstenedione (adione) to testosterone, suggesting that specific inhibitors of 17β-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia. STX2171 is a novel selective non-steroidal 17β-HSD3 inhibitor with an IC50 of ∼200 nM in a whole-cell assay. It inhibits adione-stimulated proliferation of 17β-HSD3-expressing androgen receptor-positive LNCaP(HSD3) prostate cancer cells in vitro. An androgen-stimulated LNCaP(HSD3) xenograft proof-of-concept model was developed to study the efficacies of STX2171 and a more established 17β-HSD3 inhibitor, STX1383 (SCH-451659, Schering-Plough), in vivo. Castrated male MF-1 mice were inoculated s.c. with 1×107 cells 24 h after an initial daily dose of testosterone propionate (TP) or vehicle. After 4 weeks, tumours had not developed in vehicle-dosed mice, but were present in 50% of those mice given TP. One week after switching the stimulus to adione, mice were dosed additionally with the vehicle or inhibitor for a further 4 weeks. Both TP and adione efficiently stimulated tumour growth and increased plasma testosterone levels; however, in the presence of either 17β-HSD3 inhibitor, adione-dependent tumour growth was significantly inhibited and plasma testosterone levels reduced. Mouse body weights were unaffected. Both inhibitors also significantly lowered plasma testosterone levels in intact mice. In conclusion, STX2171 and STX1383 significantly lower plasma testosterone levels and inhibit androgen-dependent tumour growth in vivo, indicating that 17β-HSD3 inhibitors may have application in the treatment of hormone-dependent prostate cancer.


2017 ◽  
Author(s):  
J.A. Grogan ◽  
A.J. Connor ◽  
B. Markelc ◽  
R.J. Muschel ◽  
P.K. Maini ◽  
...  

AbstractSpatial models of vascularized tissues are widely used in computational physiology, to study for example, tumour growth, angiogenesis, osteogenesis, coronary perfusion and oxygen delivery. Composition of such models is time-consuming, with many researchers writing custom software for this purpose. Recent advances in imaging have produced detailed three-dimensional (3D) datasets of vascularized tissues at the scale of individual cells. To fully exploit such data there is an increasing need for software that allows user-friendly composition of efficient, 3D models of vascularized tissue growth, and comparison of predictions with in vivo or in vitro experiments and other models. Microvessel Chaste is a new open-source library for building spatial models of vascularized tissue growth. It can be used to simulate vessel growth and adaptation in response to mechanical and chemical stimuli, intra- and extra-vascular transport of nutrient, growth factor and drugs, and cell proliferation in complex 3D geometries. The library provides a comprehensive Python interface to solvers implemented in C++, allowing user-friendly model composition, and integration with experimental data. Such integration is facilitated by interoperability with a growing collection of scientific Python software for image processing, statistical analysis, model annotation and visualization. The library is available under an open-source Berkeley Software Distribution (BSD) licence at https://jmsgrogan.github.io/MicrovesselChaste. This article links to two reproducible example problems, showing how the library can be used to model tumour growth and angiogenesis with realistic vessel networks.


2020 ◽  
Vol 7 (5) ◽  
pp. 1273-1283 ◽  
Author(s):  
Zhishan Xu ◽  
Yuliang Yang ◽  
Xianglei Jia ◽  
Lihua Guo ◽  
Xingxing Ge ◽  
...  

Iridium(iii)-based complexes with phosphine-imine (P^N) ligands are synthesized and authenticated. The combined treatment with Ir(iii) and BIX01294 potently inhibited tumour growth and lung metastasis in vitro and in vivo.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Xuan Zhang ◽  
Yi Zhang ◽  
Zhongyuan He ◽  
Kai Yin ◽  
Bowen Li ◽  
...  

Abstract An increasing number of studies indicate that adrenergic signalling plays a fundamental role in chronic stress-induced tumour progression and metastasis. However, its function in gastric cancer (GC) and its potential mechanisms remain unknown. The expression levels of β-adrenergic receptor (ADRB) in GC cell lines were examined by using real-time polymerase chain reaction (RT-PCR) and western blotting. The effects of β2 adrenergic receptor (ADRB2) activation and blockade were investigated in vitro in GC cells by using proliferation, migration, invasion, cell cycle and apoptosis assays. Chronic restraint stress (CRS) increased the plasma levels of catecholamines and cortisol and also induced progression and metastasis of GC in vivo. Furthermore, immunohistochemical staining and a TUNEL assay were employed to observe the regulation of cell viability in vivo. The expression levels of ADRB2 in 100 human GC samples were measured by RT-PCR and immunohistochemistry. The stress hormones epinephrine and norepinephrine significantly accelerated GC cell proliferation, invasion and viability in culture, as well as tumour growth in vivo. These effects were reversed by the ADRB antagonists propranolol and ICI118,551 (an ADRB2-specific antagonist). Moreover, the selective ADRB1 antagonist atenolol had almost no effect on tumour cell proliferation and invasion in vitro and in vivo. ADRB2 antagonists suppressed proliferation, invasion and metastasis by inhibiting the ERK1/2-JNK-MAPK pathway and transcription factors, such as NF-κB, AP-1, CREB and STAT3. Analysis of xenograft models using GC cells revealed that ADRB2 antagonists significantly inhibited tumour growth and metastasis, and chronic stress antagonized these inhibitory effects. In addition, chronic stress increased the expression of VEGF, MMP-2, MMP-7 and MMP-9 in transplanted tumour tissue, and catecholamine hormones enhanced the expression of metastasis-related proteins. The expression of ADRB2 was upregulated in tumour tissues and positively correlated with tumour size, histological grade, lymph node metastasis and clinical stage in human GC samples. Stress hormone-induced activation of the ADRB2 signalling pathway plays a crucial role in GC progression and metastasis. These findings indicate that ADRB2 signalling regulates GC progression and suggest β2 blockade as a novel strategy to complement existing therapies for GC.


2010 ◽  
Vol 99 (11) ◽  
pp. 4642-4657 ◽  
Author(s):  
Pui E.E. Wong ◽  
Laurence Tetley ◽  
Christine Dufés ◽  
Kar Wai Chooi ◽  
Katherine Bolton ◽  
...  

2017 ◽  
Vol 23 (50) ◽  
pp. 12326-12337 ◽  
Author(s):  
Katja Seidel ◽  
Asha Balakrishnan ◽  
Christoph Alexiou ◽  
Christina Janko ◽  
Ronja-Melinda Komoll ◽  
...  

Author(s):  
Richard S. Metcalfe ◽  
Rachael Kemp ◽  
Shane M. Heffernan ◽  
Rachel Churm ◽  
Yung-Chih Chen ◽  
...  

AbstractRegular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1388-1388
Author(s):  
Mireille Guerin ◽  
Cynthia Therien ◽  
Gorazd Krosl ◽  
Jinzi J. Wu ◽  
Helene Dulude ◽  
...  

Abstract Prostate secretory protein 94 (PSP-94) has been shown to exert anti-tumor activity against prostate cancer cells, particularly in the form of PCK3145, a synthetic peptide corresponding to amino acids 31–45 of PSP-94. Indeed, when tested in a murine model, this peptide could reduce experimental prostate tumour growth. In addition, when evaluated in a Phase I clinical study, this peptide demonstrated a particularly interesting safety profile, with almost complete lack of toxicity. In order to determine whether PCK3145 could exert cytotoxic activity against other marrow infiltrating cancers, we tested its activity both in vitro and in vivo against non-Hodgkin’s lymphoma (NHL) and other hematologic cancers. Interestingly, PCK3145 inhibited the proliferation of human NHL (SR) and myeloma (RPMI-8226) cell lines in vitro. To explore its anti-tumor activity in vivo, the impact of PCK3145 was also measured by inoculating P815 malignant cells into syngeneic DBA mice. First, four groups of 6 DBA mice were injected subcutaneously with 2x104 P815 cells and then treated with subcutaneous injections of PCK3145, and compared to a peptide with the scrambled amino acid sequence, PCK5266 (peptide derived from amino acids 52 to 66 of PSP-94), and phosphate-buffered saline (PBS). Treatment with PCK3145 significantly decreased the growth of P815 tumours in comparison to PBS (p<0.001), scrambled peptide (p<0.05) and PCK5266 (p<0.01), confirming in vivo anti-tumor activity and suggesting that tumour growth inhibition is due to the specific amino acid sequence of PCK3145. The same model was used to determine the effect of PCK3145 on metastatic dissemination following intraperitoneal administration of the peptide. PCK3145 treatment led to a decreased number of liver metastasis compared to PBS (p<0.05) and scrambled peptide (p<0.05) controls. In order to determine whether PCK3145 exerted its activity by altering metalloproteinase release, metalloproteinase MMP-9 levels were measured 3 weeks post-tumor cell exposure. MMP-9 levels, measured by ELISA, in the peripheral blood of treated P815 bearing mice were similar to those obtained with healthy animals (12.83±1.890 (mean±SD) ng/ml and 7.183±0.4070 ng/ml, respectively), while MMP-9 levels were elevated in mice treated with PBS and scrambled peptide (35.12±8.559 ng/ml and 22.60±3.944 ng/ml, respectively; p<0.05). We next tested PCK3145 treatment on human SR lymphoma cell line grown subcutaneously in NOD/SCID mice. Similarly to results obtained with murine tumors, treatment with PKC3145 resulted in significant inhibition of SR non-Hodgkin’s lymphoma growth compared to treatment with PBS (p<0.001) and scrambled peptide (p<0.01). These results demonstrate that in vivo treatment with PCK3145 can reduce tumor cell proliferation of both murine and human hematologic cancers. In addition, PCK3145 has the potential to inhibit tumor cells dissemination by lowering MMP-9 secretion. Thus, PCK3145 represents a unique peptide demonstrating sequence-specific anti-tumor activity against NHL and other hematologic malignancies. Based on these results, clinical studies are being designed to evaluate its therapeutic activity in humans.


2017 ◽  
Vol 474 (22) ◽  
pp. 3733-3746 ◽  
Author(s):  
Fatima Lahdaoui ◽  
Mathieu Messager ◽  
Audrey Vincent ◽  
Flora Hec ◽  
Anne Gandon ◽  
...  

Secreted mucins are large O-glycosylated proteins that participate in the protection/defence of underlying mucosae in normal adults. Alteration of their expression is a hallmark of numerous epithelial cancers and has often been correlated to bad prognosis of the tumour. The secreted mucin MUC5B is overexpressed in certain subtypes of gastric and intestinal cancers, but the consequences of this altered expression on the cancer cell behaviour are not known. To investigate the role of MUC5B in carcinogenesis, its expression was knocked-down in the human gastric cancer cell line KATO-III and in the colonic cancer cell line LS174T by using transient and stable approaches. Consequences of MUC5B knocking-down on cancer cells were studied with respect to in vitro proliferation, migration and invasion, and in vivo on tumour growth using a mouse subcutaneous xenograft model. Western blotting, luciferase assay and qRT–PCR were used to identify proteins and signalling pathways involved. In vitro MUC5B down-regulation leads to a decrease in proliferation, migration and invasion properties in both cell lines. Molecular mechanisms involved the alteration of β-catenin expression, localization and activity and decreased expression of several of its target genes. In vivo xenografts of MUC5B-deficient cells induced a decrease in tumour growth when compared with MUC5B-expressing Mock cells. Altogether, the present study shows that down-regulation of MUC5B profoundly alters proliferation, migration and invasion of human gastrointestinal cancer cells and that these alterations may be, in part, mediated by the Wnt/β-catenin pathway emphasizing the potential of MUC5B as an actor of gastrointestinal carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document