scholarly journals Recovery of Benthic Megafauna from Anthropogenic Disturbance at a Hydrocarbon Drilling Well (380 m Depth in the Norwegian Sea)

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e44114 ◽  
Author(s):  
Andrew R. Gates ◽  
Daniel O. B. Jones
1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


2021 ◽  
Vol 784 ◽  
pp. 147026
Author(s):  
Jean Claude Ndayishimiye ◽  
Tian Lin ◽  
Pascaline Nyirabuhoro ◽  
Gan Zhang ◽  
Wenjing Zhang ◽  
...  

Author(s):  
Øystein Gabrielsen ◽  
Kjell Larsen

The Aasta Hansteen spar in the Norwegian Sea is designed to be moored with a taut polyester rope mooring system. The water depth at the field is 1300 meters, and due to the short installation season the most efficient hookup is with pre-installed mooring lines, which require the mooring lines to be laid down on the seabed. DNV certification does not allow seabed contact for polyester ropes unless proven that no soil ingress and damage takes place. To be able to certify the ropes Statoil developed a test method including contact with soil, rope movement and forced water flow through the filter construction. Full scale tests were performed with actual rope and Aasta Hansteen soil, both in laboratory and at site. This paper discusses the certification requirements and presents adequate qualification test together with results from testing.


2015 ◽  
Vol 73 (4) ◽  
pp. 1127-1137 ◽  
Author(s):  
Leif Nøttestad ◽  
Justine Diaz ◽  
Hector Penã ◽  
Henrik Søiland ◽  
Geir Huse ◽  
...  

Abstract High abundance of Northeast Atlantic mackerel (Scomber scombrus L.), combined with limited food resources, may now force mackerel to enter new and productive regions in the northern Norwegian Sea. However, it is not known how mackerel exploit the spatially varying feeding resources, and their vertical distribution and swimming behaviour are also largely unknown. During an ecosystem survey in the Norwegian Sea during the summer feeding season, swimming direction, and speed of mackerel schools were recorded with high-frequency omnidirectional sonar in four different regions relative to currents, ambient temperature, and zooplankton. A total of 251 schools were tracked, and fish and zooplankton were sampled with pelagic trawl and WP-2 plankton net. Except for the southwest region, swimming direction of the tracked schools coincided with the prevailing northerly Atlantic current direction in the Norwegian Sea. Swimming with the current saves energy, and the current also provides a directional cue towards the most productive areas in the northern Norwegian Sea. Average mean swimming speed in all regions combined was ∼3.8 body lengths s−1. However, fish did not swim in a straight course, but often changed direction, suggesting active feeding in the near field. Fish were largest and swimming speed lowest in the northwest region which had the highest plankton concentrations and lowest temperature. Mackerel swam close to the surface at a depth of 8–39 m, with all schools staying above the thermocline in waters of at least 6°C. In surface waters, mackerel encounter improved foraging rate and swimming performance. Going with the flow until temperature is too low, based on an expectation of increasing foraging rate towards the north while utilizing available prey under way, could be a simple and robust feeding strategy for mackerel in the Norwegian Sea.


Sign in / Sign up

Export Citation Format

Share Document