scholarly journals Suppression of XBP1S Mediates High Glucose-Induced Oxidative Stress and Extracellular Matrix Synthesis in Renal Mesangial Cell and Kidney of Diabetic Rats

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56124 ◽  
Author(s):  
Decui Shao ◽  
Jia Liu ◽  
Jun Ni ◽  
Zhen Wang ◽  
Yang Shen ◽  
...  
2013 ◽  
Vol 25 (05) ◽  
pp. 1340010 ◽  
Author(s):  
Wen-Tyng Li ◽  
Wen-Kai Hu ◽  
Feng-Ming Ho

Diabetes mellitus (DM) is associated with bone loss and leads to osteopenia and osteoporosis. This study was undertaken to investigate whether the impaired functions of mesenchymal stem cells (MSCs) derived from bone marrow play a role in pathogenesis of DM-associated bone loss. Bone marrow MSCs were taken from the alloxan-induced diabetic rats and normal rats. Bone mineral densities of tibias and femurs in diabetic rats decreased compared to those of normal rats as shown by dual energy X-ray absorptiometry. MSCs from diabetic rats exhibited reduced colony formation activity. The in vitro effects of high glucose (HG) (20 or 33 mM) on the growth, oxidative stress, apoptosis, and differentiation MSCs were next assessed. The viability and proliferation of MSCs derived from diabetic rats decreased significantly compared with that from normal rats. HG further suppressed the proliferation and viability of MSCs from both diabetic and normal rats. HG was associated with 38–40% increase in reactive oxygen species level and had significantly downregulated the activities of superoxide dismutase (SOD) and catalase (CAT) which could be recovered by the addition of L-ascorbic acid. The phenomena of apoptosis such as chromatin condensation and DNA fragmentation were found in cells cultured under HG conditions. As compared with 5.5 mM glucose, exposure of MSCs to HG enhanced adipogenic induction of triacylglycerol accumulation and inhibited osteogenic induction of alkaline phosphatase activity. HG increased peroxisome proliferator-activated receptor gamma expression during adipogenesis and reduced RUNX2 expression during osteoblastogenesis. These results indicate that MSCs derived from diabetic rats exhibited the inhibitory effects on cell growth and osteogenic ability. The oxidative stress, apoptosis, and adipogenic capability of MSCs were increased by HG. Furthermore, it is suggested that HG induces bone loss via attenuating the proliferation and osteoblastogenesis and enhancing adipogenesis mediated by the oxidative stress in rat bone marrow MSCs.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Minghua Zhang ◽  
Liang Feng ◽  
Junfei Gu ◽  
Liang Ma ◽  
Dong Qin ◽  
...  

Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stressin vitroorin vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg−1) were used to induce DN rats model, while 200 μg mL−1AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedlyin vitroorin vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.


Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 2934-2942 ◽  
Author(s):  
Chun-Liang Lin ◽  
Jeng-Yi Wang ◽  
Jih-Yang Ko ◽  
Kameswaran Surendran ◽  
Yu-Ting Huang ◽  
...  

Intense mesangial cell apoptosis contributes to the pathogenesis of diabetic nephropathy. Although reactive oxygen radicals and Wnt signaling components are potent regulators that modulate renal tissue remodeling and morphogenesis, cross-talk between oxidative stress and Wnt/β-catenin signaling in controlling high-glucose-impaired mesangial cell survival and renal function have not been tested. In this study, high glucose induced Ras and Rac1 activation, superoxide burst, and Wnt5a/β-catenin destabilization and subsequently promoted caspase-3 and poly (ADP-ribose) polymerase cleavage and apoptosis in mesangial cell cultures. The pharmacological and genetic suppression of superoxide synthesis by superoxide dismutase and diphenyloniodium, dominant-negative Ras (S17N), and dominant-negative Rac1 (T17N) abrogated high-glucose-induced glycogen synthase kinase (GSK-3β) activation and caspase-3 and poly (ADP-ribose) polymerase degradation. Inactivation of Ras and Racl also reversed Wnt/β-catenin expression and survival of mesangial cells. Stabilization of β-catenin by the transfection of stable β-catenin (Δ45) and kinase-inactive GSK-3β attenuated high-glucose-mediated mesangial cell apoptosis. Exogenous superoxide dismutase administration attenuated urinary protein secretion in diabetic rats and abrogated diabetes-mediated reactive oxygen radical synthesis in renal glomeruli. Immunohistological observation revealed that superoxide dismutase treatment abrogated diabetes-induced caspase-3 cleavage and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) and increased Wnt5a/β-catenin expression in renal glomeruli. Taken together, high glucose induced oxidative stress and apoptosis in mesangial cells. The Ras and Rac1 regulation of superoxide appeared to raise apoptotic activity by activating GSK-3β and inhibiting Wnt5a/β-catenin signaling. Controlling oxidative stress and Wnt/β-catenin signaling has potential for protecting renal tissue against the deleterious effect of high glucose.


Sign in / Sign up

Export Citation Format

Share Document