scholarly journals Superoxide Destabilization of β-Catenin Augments Apoptosis of High-Glucose-Stressed Mesangial Cells

Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 2934-2942 ◽  
Author(s):  
Chun-Liang Lin ◽  
Jeng-Yi Wang ◽  
Jih-Yang Ko ◽  
Kameswaran Surendran ◽  
Yu-Ting Huang ◽  
...  

Intense mesangial cell apoptosis contributes to the pathogenesis of diabetic nephropathy. Although reactive oxygen radicals and Wnt signaling components are potent regulators that modulate renal tissue remodeling and morphogenesis, cross-talk between oxidative stress and Wnt/β-catenin signaling in controlling high-glucose-impaired mesangial cell survival and renal function have not been tested. In this study, high glucose induced Ras and Rac1 activation, superoxide burst, and Wnt5a/β-catenin destabilization and subsequently promoted caspase-3 and poly (ADP-ribose) polymerase cleavage and apoptosis in mesangial cell cultures. The pharmacological and genetic suppression of superoxide synthesis by superoxide dismutase and diphenyloniodium, dominant-negative Ras (S17N), and dominant-negative Rac1 (T17N) abrogated high-glucose-induced glycogen synthase kinase (GSK-3β) activation and caspase-3 and poly (ADP-ribose) polymerase degradation. Inactivation of Ras and Racl also reversed Wnt/β-catenin expression and survival of mesangial cells. Stabilization of β-catenin by the transfection of stable β-catenin (Δ45) and kinase-inactive GSK-3β attenuated high-glucose-mediated mesangial cell apoptosis. Exogenous superoxide dismutase administration attenuated urinary protein secretion in diabetic rats and abrogated diabetes-mediated reactive oxygen radical synthesis in renal glomeruli. Immunohistological observation revealed that superoxide dismutase treatment abrogated diabetes-induced caspase-3 cleavage and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) and increased Wnt5a/β-catenin expression in renal glomeruli. Taken together, high glucose induced oxidative stress and apoptosis in mesangial cells. The Ras and Rac1 regulation of superoxide appeared to raise apoptotic activity by activating GSK-3β and inhibiting Wnt5a/β-catenin signaling. Controlling oxidative stress and Wnt/β-catenin signaling has potential for protecting renal tissue against the deleterious effect of high glucose.

2003 ◽  
Vol 284 (3) ◽  
pp. F455-F466 ◽  
Author(s):  
Barinder P. S. Kang ◽  
Stanley Frencher ◽  
Venkatesh Reddy ◽  
Alex Kessler ◽  
Ashwani Malhotra ◽  
...  

Reactive oxygen species are recognized as important mediators of biological responses. Hyperglycemia promotes the intracellular generation of superoxide anion and hydrogen peroxide. In several cell lines, oxidant stress has been linked to the activation of death programs. Here, we report for the first time that high ambient glucose concentration induces apoptosis in murine and human mesangial cells by an oxidant-dependent mechanism. The signaling cascade activated by glucose-induced oxidant stress included the heterodimeric redox-sensitive transcription factor NF-κB, which exhibited an upregulation in p65/c-Rel binding activity and suppressed binding activity of the p50 dimer. Recruitment of NF-κB and mesangial cell apoptosis were both inhibited by antioxidants, implicating oxidant-induced activation of NF-κB in the transmission of the death signal. The genetic program for glucose-induced mesangial cell apoptosis was characterized by an upregulation of the Bax/Bcl-2 ratio. In addition, phosphorylation of the proapoptotic protein Bad was attenuated in mesangial cells maintained at high-glucose concentration, favoring progression of the apoptotic process. These perturbations in the expression and phosphorylation of the Bcl-2 family were coupled with the release of cytochrome c from mitochondria and caspase activation. Our findings indicate that in mesangial cells exposed to high ambient glucose concentration, oxidant stress is a proximate event in the activation of the death program, which culminates in mitochondrial dysfunction and caspase-3 activation, as the terminal event.


2017 ◽  
Vol 90 ◽  
pp. 796-805 ◽  
Author(s):  
Changjiang Ying ◽  
Lei Chen ◽  
Shanshan Wang ◽  
Yizhen Mao ◽  
Hongwei Ling ◽  
...  

2014 ◽  
Vol 224 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Suwattanee Kooptiwut ◽  
Wanthanee Hanchang ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Thawornchai Limjindaporn ◽  
...  

Hypogonadism in men is associated with an increased incidence of type 2 diabetes. Supplementation with testosterone has been shown to protect pancreatic β-cell against apoptosis due to toxic substances including streptozotocin and high glucose. One of the pathological mechanisms of glucose-induced pancreatic β-cell apoptosis is the induction of the local rennin–angiotensin–aldosterone system (RAAS). The role of testosterone in regulation of the pancreatic RAAS is still unknown. This study aims to investigate the protective action of testosterone against glucotoxicity-induced pancreatic β-cell apoptosis via alteration of the pancreatic RAAS pathway. Rat insulinoma cell line (INS-1) cells or isolated male mouse islets were cultured in basal and high-glucose media in the presence or absence of testosterone, losartan, and angiotensin II (Ang II), then cell apoptosis, cleaved caspase 3 expression, oxidative stress, and expression of angiotensin II type 1 receptor (AGTR1) and p47phox mRNA and protein were measured. Testosterone and losartan showed similar effects in reducing pancreatic β-cell apoptosis. Testosterone significantly reduced expression of AGTR1 protein in INS-1 cells cultured in high-glucose medium or high-glucose medium with Ang II. Testosterone decreased the expression of AGTR1 and p47phox mRNA and protein in comparison with levels in cells cultured in high-glucose medium alone. Furthermore, testosterone attenuated superoxide production when co-cultured with high-glucose medium. In contrast, when cultured in basal glucose, supplementation of testosterone did not have any effect on cell apoptosis, oxidative stress, and expression of AGT1R and p47phox. In addition, high-glucose medium did not increase cleaved caspase 3 in AGTR1 knockdown experiments. Thus, our results indicated that testosterone prevents pancreatic β-cell apoptosis due to glucotoxicity through reduction of the expression of ATGR1 and its signaling pathway.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2020 ◽  
Vol 28 (3) ◽  
pp. 963-974 ◽  
Author(s):  
Yi-Chun Tsai ◽  
Mei-Chuan Kuo ◽  
Wei-Wen Hung ◽  
Ling-Yu Wu ◽  
Ping-Hsun Wu ◽  
...  

2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2021 ◽  
Author(s):  
Huogen Liu ◽  
Ling Gu ◽  
Yundi Shi ◽  
Hailin Shu ◽  
Fengming Huang ◽  
...  

Abstract Background This study aimed to investigate the diagnostic function of CD36 in type 2 diabetic (T2DM) sepsis complications (T2DSC) and its effect on β-cell differentiation. Methods First, Age - and sex-matched T2DM patients, T2DSC patients and healthy people (50 cases each) were included. Quantitative polymerase chain reaction was used to measure CD36, FOXO1, PDX1, MAFA, insulin, SOX9, Neurog3 and NANOG expression in blood samples. Second, cultured human β-cell line EndoC-βH1 and the interference and overexpression of CD36. Cell clone, apoptosis, inflammatory cytokine, oxidative stress and β-cell differentiation related proteins were also analysed. Third, examined the role of CD36 in high glucose, LPS-induced β-cell. Results CD36 mRNA, and endocrine progenitor β-cell biomarkers SOX9, Neurog3 and NANOG were significantly increased in T2DM than control group, whereas the β-cell maturation biomarkers FOXO1, PDX1, MAFA and insulin were significantly decreased. Compared with the T2DM group, CD36 and FOXO1 were significantly increased in T2DSC, but PDX1, insulin, MAFA, SOX9, Neurog3 and NANOG were significantly decreased. The receiver operating characteristic curve revealed that CD36 was useful for distinguishing T2MD and T2DSC from the control group. Furthermore, CD36 overexpression increased β-cell apoptosis and the secretion of IL-1β, IL-8 TNF-α, malondialdehyde and reactive oxygen species. CD36 induced cell defferentiation. Lastly, CD36 knockdown could inhibit the high glucose and LPS-induced cell apoptosis, inflammatory, oxidative stress and cell defferentiation. Conclusion Significant increase in CD36 can be used as a biomarker for T2MD and T2DSC. CD36 promotes T2MD or T2DSC development by inducing β-cell inflammatory and oxidative stress and defferentiation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Lin Liao ◽  
Jie Chen ◽  
Chuanfu Zhang ◽  
Yue Guo ◽  
Weiwei Liu ◽  
...  

Glomerular hypertrophy is an early morphological alteration in diabetic nephropathy. Cyclin-Dependent Kinases have been shown to be required for high glucose (HG)-induced hypertrophy; however, the upstream regulators of CDKN1B in glomerular hypertrophy remain unclear. Herein we describe a novel pathway in which Long noncoding RNA (lncRNA) NEAT1 regulates the progression of mesangial cell hypertrophy via a competing endogenous RNA (ceRNA) mechanism. Real-time PCR was performed to detect the relative NEAT1 and miR-222-3p expressions and further confirmed the relationship between NEAT1 and miR-222-3p. Cell cycle was evaluated by flow cytometry. The related mechanisms were explored by Western blot, RNA immunoprecipitation and chromatin immunoprecipitation assay. We show that NEAT1 forms double stranded RNA (dsRNA) with miR-222-3p, thus limiting miR-222-3p’s binding with CDKN1B. This release of CDKN1B mRNA leads to elevated CDKN1B protein expression, resulting in hypertrophy. In addition, we demonstrated that STAT3 which is activated by HG induces the transcription of NEAT1 by binding to its promoter. Our findings underscore an unexpected role of lncRNAs on gene regulation and introduce a new mode of proliferation regulation in mesangial cells.


Sign in / Sign up

Export Citation Format

Share Document