scholarly journals Differential Expression of HPV16 L2 Gene in Cervical Cancers Harboring Episomal HPV16 Genomes: Influence of Synonymous and Non-Coding Region Variations

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65647 ◽  
Author(s):  
Paramita Mandal ◽  
Bornali Bhattacharjee ◽  
Damayanti Das Ghosh ◽  
Nidhu Ranjan Mondal ◽  
Rahul Roy Chowdhury ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 611-611
Author(s):  
Erin J. Oakley ◽  
Hartmut Geiger ◽  
Gary Van Zant

Abstract It is well documented that both quantitative and qualitative changes in the murine hematopoietic stem cell (HSC) population occur with age. We have previously mapped a quantitative trait locus (QTL) to murine chromosome 2 that is associated with the variation in frequency of HSCs between aged C57BL/6 (B6) and DBA/2 (D2) mice. In B6 mice the HSC population steadily increases with age, whereas in D2 mice, this population declines. A QTL regulating the natural variation in lifespan between the two strains was mapped to the same location on mouse Chr 2, thus leading to the hypothesis that stem cell function affects longevity. B6 alleles of this locus, associated with expansion of the stem cell pool, are also associated with a ~50% increase in lifespan. In the present study, we characterize a congenic mouse model which was generated by introgressing D2 alleles in the QTL onto a B6 background. Using a surrogate assay to mimic aging, we analyzed the cell cycle, apoptotic and self-renewal capabilities of congenic and B6 HSCs and show that D2 alleles in the QTL affect the apoptotic and self-renewal capabilities of HSCs. Next, we used oligonucleotide arrays to compare the differential expression of B6 and congenic cells using a population enriched for primitive stem and progenitor cells. Three variables were examined using Affymetrix M430 arrays: the effect of strain—congenic versus background; the effect of age—2 months versus 22 months; and the effects of 2 Gy of irradiation because previous studies indicated that congenic animals were highly sensitive to the effects of mild radiation compared to B6 background animals. Extensive analysis of the expression arrays pointed to a strong candidate, the gene encoding Retinoblastoma like protein 1, otherwise known as p107. The B6 allele is associated with increased p107 expression in old HSCs therefore p107 in this context is a positive regulator of stem cell number in aged mice. Real-time PCR was used to validate the differential expression of p107 in lineage negative and lineage negative Sca-1+, c-kit+ (LSK) cells. Detailed sequence analysis of the gene revealed the presence of 4 non-synonymous, coding region single nucleotide polymorphisms (SNPs) between B6 and D2 mice, which may contribute to the differential expression of the gene and function of the protein. Perhaps most importantly, we show that overexpression of p107 in congenic HSCs increases day 21, day 28, and day 35 CAFC numbers in vivo by 2- to 4-fold, therefore confirming its role as a positive regulator of primitive progenitor populations including HSCs. These studies uncover a novel role for p107 and provide additional clues in the complex regulation of stem cell aging.


2020 ◽  
Vol 63 (1) ◽  
pp. 81-90
Author(s):  
Fangting Zhou ◽  
Yongyun Zhang ◽  
Xiaohong Teng ◽  
Yongwang Miao

Abstract. It has been found that diacylglycerol acyltransferase-2 (DGAT2) plays a crucial role in the synthesis of triglycerides (TGs) in some mammals, but its role in buffalo lactation is unclear. In the present study, the DGAT2 full-CDS cDNA sequence of Binglangjiang buffalo was isolated, and the physicochemical characteristics and structure of its encoding protein were characterized. Furthermore, the differential expressions of this gene in 10 tissues of lactating and non-lactating buffalo were analyzed by real-time quantitative PCR (RT-qPCR). The results showed that the coding region (CDS) of this gene was 1086 bp in length, encoding a peptide composed of 361 amino acid residues. The deduced amino acid sequence shared more than 98.6 % identity with that of cattle, zebu, yak, and bison in the Bovidae family. Buffalo DGAT2 protein is a slightly hydrophobic protein with a transmembrane region, which functions in membrane of endoplasmic reticulum. Besides, this protein belongs to the LPLAT_MGAT-like family and contains a conserved domain of DAGAT that has a function in the synthesis of TGs. The multi-tissue differential expression analysis demonstrated that DGAT2 was expressed in the heart, liver, mammary gland, and muscle in both non-lactating and lactating buffalo. And its expression level in the heart, liver, and mammary gland during lactation was significantly higher than that during non-lactation. The results indicate that buffalo DGAT2 may be involved in milk fat synthesis. This study can establish a foundation for further elucidating mechanisms of the buffalo DGAT2 gene in milk fat synthesis.


Neuron ◽  
2015 ◽  
Vol 88 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
Arif Kocabas ◽  
Terence Duarte ◽  
Saranya Kumar ◽  
Mary A. Hynes

2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Dong-Joo Cheon ◽  
Ann E. Walts ◽  
Jessica A. Beach ◽  
Jenny Lester ◽  
John S. Bomalaski ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 256-256
Author(s):  
Steven Smith ◽  
Gary Oxford ◽  
Dan Theodorescu

Sign in / Sign up

Export Citation Format

Share Document