scholarly journals Effect of Concomitant Administration of L-Glutamine and Cycloart-23-ene-3β, 25-diol (B2) with Sitagliptin in GLP-1 (7–36) Amide Secretion, Biochemical and Oxidative Stress in Streptozotocin - Nicotinamide Induced Diabetic Sprague Dawley Rats

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72817 ◽  
Author(s):  
Sachin L. Badole ◽  
Swapnil M. Chaudhari ◽  
Pranita P. Bagul ◽  
Sagar P. Mahamuni ◽  
Rekha D. Khose ◽  
...  
2014 ◽  
Vol 31 (4) ◽  
pp. 233-243
Author(s):  
Ivana Stojanović ◽  
Srđan Ljubisavljević ◽  
Ivana Stevanović ◽  
Slavica Stojnev ◽  
Radmila Pavlović ◽  
...  

Summary The aim of this study was to investigate the exogenous agmatine influence on nitrosative and oxidative stress parameters in acute phase of multiple sclerosis (MS) experimental model, experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous injection of myelin basic protein (50 μg per animal). Sprague-Dawley rats were divided into five groups: I group - (CG), treated by PBS (i.p.), II group - (EAE), III group - (CFA), treated with Complete Freund’s adjuvant (0.2 ml subcutaneously), IV group - (EAE+AGM), treated by agmatine (75 mg/kg bw i.p.) upon EAE induction and V group - (AGM), received only agmatine in the same dose. The animals were treated every day during experiment - from day 0 to 15, and clinically scored every day. They were sacrificed on day 16 from MBP application. NO2+NO3, S-nitrosothiols (RSNO), malondyaldehide (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in rat whole encephalitic mass (WEM) and cerebellum homogenates. Agmatine exerted strong protective effects on EAE clinical symptoms (p<0.05). In EAE brain homogenates, NO2+NO3, RSNO and MDA concentrations were increased compared to CG values. Agmatine treatment diminished NO2+NO3, RSNO and MDA levels in EAE animals (p<0.05). In EAE rats, GSH level and SOD activity were decreased compared to CG values, but agmatine treatment increased both parameters compared to EAE untreated animals (p<0.05). Immunohistochemical staining supported the clinical and biochemical findings in all groups. The CNS changes in EAE are successfully supressed by agmatine application, which could be the the new aspect of the neuroprotective effects of agmatine.


2008 ◽  
Vol 31 (2) ◽  
pp. 62 ◽  
Author(s):  
Sowndramalingam Sankaralingam ◽  
Kaushik M Desai ◽  
Thomas W Wilson

Purpose: High salt intake causes hypertension and endothelial dysfunction in young Sprague-Dawley rats. Clofibrate (clof) prevents this salt induced hypertension. We asked whether clof can prevent salt-induced endothelial dysfunction, and if so, its mechanism. We also questioned whether high salt intake can induce endothelial dysfunction without hypertension in older animals. Methods: Young (Y, 5 weeks) and old (O, 53 weeks) male Sprague-Dawley rats were given either vehicle (Con, 20 mM Na2CO3) or 0.9% NaCl (Sal) to drink for three weeks. Some young rats received clof (80 mg/d) in their drinking fluid. After three weeks, we measured mean arterial pressure (MAP), endothelial function, by comparing hypotensive responses to acetylcholine (ACh, endothelium dependent) and sodium nitroprusside (SNP, endothelium independent), plasma total nitrite+nitrate levels (PNOx), by the Griess reaction, and aortic superoxide production by lucigenin chemiluminescence. Results: Carotid artery MAP did not change in O. Sal-Y developed hypertension: 133±3 vs. 114±2 mmHg, P < 0.001, which was prevented by clof: 105±2 mmHg. ACh induced a similar dose dependent hypotensive response in Con-O and Sal-O that was inhibited by L-NAME (100mg/kg i.v.). Responses to ACh were blunted in Sal-Y but not in Con-Y. Further, L-NAME inhibited ACh responses only in Con-Y. The response to SNP was similar in all animals. Importantly, the ACh-induced hypotensive response was potentiated in clof+Sal-Y, an effect which was attenuated by blocking calcium-activated potassium channels (KCa) with a combination of apamin (50 ug/kg i.v.) + charybdotoxin (50 ug/kg i.v.), but not by L-NAME. PNOx was reduced in Sal-Y compared to Con-Y (2.09±0.26 vs. 4.8±0.35 µM, P < 0.001), but not in Sal-O. Aortic superoxide production was higher (P < 0.001) in Sal-Y (2388±40 milliunits/mg/min) than Sal-O (1107±159 milliunits/mg/min), but was reduced by clof (1378±64 milliunits/mg/min; P < 0.001). Conclusions: High salt intake increases oxidative stress in young animals, leading to impaired nitric oxide activity and endothelial dysfunction. Clofibrate prevents endothelial dysfunction partly through reduced O2?- formation but mainly via selective activation of KCa channels. Older animals are resistant to both salt induced hypertension and oxidative stress.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 892 ◽  
Author(s):  
Zetty Zulikha Hafiz ◽  
Muhammad ‘Afif Mohd Amin ◽  
Richard Muhammad Johari James ◽  
Lay Kek Teh ◽  
Mohd Zaki Salleh ◽  
...  

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats’ model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer’s disease through inhibiting the AChE, inflammation, and oxidative stress activities.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Didem Onk ◽  
Oruc Alper Onk ◽  
Kultigin Turkmen ◽  
Huseyin Serkan Erol ◽  
Tulin Akarsu Ayazoglu ◽  
...  

Background.Inflammation and oxidative stress (OxS) contribute to the pathogenesis of diabetic kidney disease (DKD) and contrast-induced nephropathy (CIN). Patients with DKD were found to be more prone to CIN. Interleukin-33 (IL-33) is a proinflammatory cytokine, but its role in DKD and CIN is unknown.Methods.Thirty male Sprague-Dawley rats were enrolled. The first group was comprised of healthy rats (HRs), whereas the other four groups were made up of diabetic rats (DRs), diabetic rats with contrast-induced nephropathy (CIN + DRs), melatonin-treated diabetic rats (MTDRs), and melatonin-treated CIN + DRs (MTCIN + DRs). All groups except the HRs received 50 mg/kg/day streptozotocin (STZ). CIN + DRs were constituted by administrating 1.5 mg/kg of intravenous radiocontrast dye on the 35th day. MTDRs and MTCIN + DRs were given 20 mg/kg/day of intraperitoneal injection of melatonin (MT) from the 28th day for the constitutive seven days.Results.We observed increased IL-33 in the kidney tissue following induction of CIN in DRs. To determine whether MT is effective in preventing CIN, we administered MT in CIN + DRs and demonstrated that kidney tissue levels of OxS markers, inflammatory cytokines, and IL-33 were significantly diminished in MTCIN + DRs compared with other groups without MT treatment (p<0.05).Conclusion.Inhibition of IL-33 with MT provides therapeutic potential in DKD with CIN.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 332 ◽  
Author(s):  
Sara Damiano ◽  
Emanuela Andretta ◽  
Consiglia Longobardi ◽  
Francesco Prisco ◽  
Orlando Paciello ◽  
...  

Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA–induced oxidative damage in the kidneys of rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 125
Author(s):  
Sara Damiano ◽  
Consiglia Longobardi ◽  
Emanuela Andretta ◽  
Francesco Prisco ◽  
Giuseppe Piegari ◽  
...  

Ochratoxin A (OTA) is a powerful mycotoxin found in various foods and feedstuff, responsible for subchronic and chronic toxicity, such as nephrotoxicity, hepatotoxicity, teratogenicity, and immunotoxicity to both humans and several animal species. The severity of the liver damage caused depends on both dose and duration of exposure. Several studies have suggested that oxidative stress might contribute to increasing the hepatotoxicity of OTA, and several antioxidants, including curcumin (CURC), have been tested to counteract the toxic hepatic action of OTA in various classes of animals. Therefore, the present study was designed to evaluate the protective effect of CURC, a bioactive compound with different therapeutic properties on hepatic injuries caused by OTA in rat animal models. CURC effects were examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. At the end of the experiment, rats treated with OTA showed alterations in biochemical parameters and oxidative stress in the liver. CURC dosing significantly attenuated oxidative stress and lipid peroxidation versus the OTA group. Furthermore, liver histological tests showed that CURC reduced the multifocal lymphoplasmacellular hepatitis, the periportal fibrosis, and the necrosis observed in the OTA group. This study provides evidence that CURC can preserve OTA-induced oxidative damage in the liver of rats.


Sign in / Sign up

Export Citation Format

Share Document