scholarly journals The Effect of Hyperglycaemia on In Vitro Cytokine Production and Macrophage Infection with Mycobacterium tuberculosis

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117941 ◽  
Author(s):  
Ekta Lachmandas ◽  
Frank Vrieling ◽  
Louis G. Wilson ◽  
Simone A. Joosten ◽  
Mihai G. Netea ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94296 ◽  
Author(s):  
Yih-Yuan Chen ◽  
Jia-Ru Chang ◽  
Wei-Feng Huang ◽  
Shu-Ching Hsu ◽  
Shu-Chen Kuo ◽  
...  

2016 ◽  
Vol 84 (9) ◽  
pp. 2505-2523 ◽  
Author(s):  
Wenwei Lin ◽  
Paola Florez de Sessions ◽  
Garrett Hor Keong Teoh ◽  
Ahmad Naim Nazri Mohamed ◽  
Yuan O. Zhu ◽  
...  

Increasing experimental evidence supports the idea thatMycobacterium tuberculosishas evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge ofM. tuberculosisresponse to the hostile lysosomal environment, we profiled the global transcriptional activity ofM. tuberculosiswhen exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication,M. tuberculosisexpressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified theglgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection andin vitrostress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding geneRv1258cwas selected for validation. AnM. tuberculosis ΔRv1258cmutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1.


2018 ◽  
Vol 119 ◽  
pp. 60-64 ◽  
Author(s):  
Pedro Ferrari Dalberto ◽  
Valnês Rodrigues-Junior ◽  
Virginia Carla Almeida Falcão ◽  
Antônio Frederico Michel Pinto ◽  
Bruno Lopes Abbadi ◽  
...  

Author(s):  
Yafei Rao ◽  
Xiaoyan Gai ◽  
Yanqing Le ◽  
Jing Xiong ◽  
Yujia Liu ◽  
...  

AimSmoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB).MethodsWe profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation.ResultsPeripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation.ConclusionSmoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.


2008 ◽  
Vol 76 (7) ◽  
pp. 3027-3036 ◽  
Author(s):  
Daniel Sinsimer ◽  
Gaelle Huet ◽  
Claudia Manca ◽  
Liana Tsenova ◽  
Mi-Sun Koo ◽  
...  

ABSTRACT Mycobacterium tuberculosis possesses a diversity of potential virulence factors including complex branched lipids such as the phenolic glycolipid PGL-tb. PGL-tb expression by the clinical M. tuberculosis isolate HN878 has been associated with a less efficient Th1 response and increased virulence in mice and rabbits. It has been suggested that the W-Beijing family is the only group of M. tuberculosis strains with an intact pks1-15 gene, required for the synthesis of PGL-tb and capable of producing PGL-tb. We have found that some strains with an intact pks1-15 do not produce PGL-tb while others may produce a variant of PGL-tb. We examined the early host cytokine response to infection with these strains in vitro to better understand the effect of PGL-tb synthesis on immune responses. In addition, we generated a PGL-tb-producing H37Rv in order to determine the effect of PGL-tb production on the host immune response during infection by a strain normally devoid of PGL-tb synthesis. We observed that PGL-tb production by clinical M. tuberculosis isolates affected cytokine production differently depending on the background of the strain. Importantly, while ectopic PGL-tb production by H37Rv suppressed the induction of several pro- and anti-inflammatory cytokines in vitro in human monocytes, it did not lead to increased virulence in infected mice and rabbits. Collectively, our data indicate that, while PGL-tb may play a role in the immunogenicity and/or virulence of M. tuberculosis, it probably acts in concert with other bacterial factors which seem to be dependent on the background of the strain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Monika Looney ◽  
Rachel Lorenc ◽  
Marc K. Halushka ◽  
Petros C. Karakousis

Tuberculosis (TB) is the leading cause of death from infection with a single bacterial pathogen. Host macrophages are the primary cell type infected with Mycobacterium tuberculosis (Mtb), the organism that causes TB. Macrophage response pathways are regulated by various factors, including microRNAs (miRNAs) and epigenetic changes that can shape the outcome of infection. Although dysregulation of both miRNAs and DNA methylation have been studied in the context of Mtb infection, studies have not yet investigated how these two processes may jointly co-regulate critical anti-TB pathways in primary human macrophages. In the current study, we integrated genome-wide analyses of miRNA abundance and DNA methylation status with mRNA transcriptomics in Mtb-infected primary human macrophages to decipher which macrophage functions may be subject to control by these two types of regulation. Using in vitro macrophage infection models and next generation sequencing, we found that miRNAs and methylation changes co-regulate important macrophage response processes, including immune cell activation, macrophage metabolism, and AMPK pathway signaling.


2018 ◽  
Author(s):  
Eliza J.R. Peterson ◽  
Rebeca Bailo ◽  
Alissa C. Rothchild ◽  
Mario Arrieta-Ortiz ◽  
Amardeep Kaur ◽  
...  

AbstractThe success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA. Using Path-seq we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/A2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.One Sentence SummaryNovel technology (Path-seq) discovers cell wall remodeling program during Mycobacterium tuberculosis infection of macrophages


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Yumi Park ◽  
Yong-Mo Ahn ◽  
Surendranadha Jonnala ◽  
Sangmi Oh ◽  
Julia M. Fisher ◽  
...  

ABSTRACT Mechanisms of magnesium homeostasis in Mycobacterium tuberculosis are poorly understood. Here, we describe the characterization of a pyrimidinetrione amide scaffold that disrupts magnesium homeostasis in the pathogen by direct binding to the CorA Mg2+/Co2+ transporter. Mutations in domains of CorA that are predicted to regulate the pore opening in response to Mg2+ ions conferred resistance to this scaffold. The pyrimidinetrione amides were cidal against the pathogen under both actively replicating and nonreplicating conditions in vitro and were efficacious against the organism during macrophage infection. However, the compound lacked efficacy in infected mice, possibly due to limited exposure. Our results indicate that inhibition of Mg2+ homeostasis by CorA is an attractive target for tuberculosis drug discovery and encourage identification of improved CorA inhibitors.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Seoung-ryoung Choi ◽  
Bradley E. Britigan ◽  
Prabagaran Narayanasamy

ABSTRACT Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a global threat. The course of TB is negatively impacted by coexistent infection with human immunodeficiency virus type 1 (HIV). Macrophage infection with these pathogens modulates their production of pro- and anti-inflammatory cytokines, which could play a crucial role in pathogenesis. Despite the important role of macrophages in containing infection by a variety of microbes, both HIV and M. tuberculosis infect and replicate within these cells during the course of HIV-M. tuberculosis coinfection. Both M. tuberculosis and HIV require iron for growth and replication. We have previously shown that gallium encapsulated in nanoparticles, which interferes with cellular iron acquisition and utilization, inhibited the growth of HIV and an attenuated strain of M. tuberculosis within human monocyte-derived macrophages (MDMs) in vitro. Whether this was true for a fully virulent strain of M. tuberculosis and whether gallium treatment modulates cytokine production by HIV- and/or M. tuberculosis-infected macrophages have not been previously addressed. Therefore, coinfection of MDMs with HIV and a virulent M. tuberculosis strain (H37Rv) was studied in the presence of different gallium nanoparticles (GaNP). All GaNP were readily internalized by the MDMs, which provided sustained drug (gallium) release for 15 days. This led to significant growth inhibition of both HIV and M. tuberculosis within MDMs for up to 15 days after loading of the cells with all GaNP tested in our study. Cytokine analysis showed that HIV-M. tuberculosis coinfected macrophages secreted large amounts of interleukin 6 (IL-6) and IL-8 and smaller amounts of IL-1β, IL-4, and tumor necrosis factor alpha (TNF-α) cytokines. However, all GaNP were able to regulate the release of cytokines significantly. GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. IMPORTANCE GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of virulent HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. Macrophage-targeting GaNP are a promising therapeutic approach to provide sustained antimicrobial activity against HIV-M. tuberculosis coinfection.


2021 ◽  
Author(s):  
Francesca Boldrin ◽  
Itxaso Anso ◽  
Sogol Alebouyeh ◽  
Iker A. Sevilla ◽  
Mariví Geijo ◽  
...  

Mycobacterium tuberculosis comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids considered not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane associated acyltransferase that transfers a palmitoyl moiety from palmitoyl–CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We validate that the function of PatA is vital for M. tuberculosis in vitro and in vivo. We constructed a patA conditional mutant and showed that silencing patA is bactericidal in batch cultures. This phenotype was associated with significant reduced levels of Ac1PIM2, an important structural component of the mycobacterial inner membrane. The requirement of PatA for viability was also demonstrated during macrophage infection and in a mouse model of infection, where a dramatic decrease in viable counts was observed upon silencing of the patA gene. This is reminiscent of the behavior of PimA, the mannosyltransferase that initiates the PIM pathway, also found to be essential for M. tuberculosis growth in vitro and in vivo. Altogether, the experimental data highlights the significance of the early steps of PIM biosynthetic pathway for M. tuberculosis physiology and uncover that PatA is a novel target for drug discovery programs against this major human pathogen. IMPORTANCE TB is the leading cause of death from a single infectious agent. The emergence of drug resistance in strains of M. tuberculosis, the etiologic agent of TB, emphasizes the need of identifying new targets and antimicrobial agents. The mycobacterial cell envelope is a major factor in this intrinsic drug resistance. Here, we have focused on the biosynthesis of PIMs, key virulence factors and important components of the cell envelope. Specifically, we have determined PatA, the acyltransferase responsible for the first acylation step of the PIM synthesis pathway, is essential in M. tuberculosis. These results highlight the importance of early steps of PIM biosynthetic pathway for mycobacterial physiology and the suitability of PatA as a potential new drug target.


Sign in / Sign up

Export Citation Format

Share Document