scholarly journals Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130230 ◽  
Author(s):  
Marilyne Labrie ◽  
Simon Lalonde ◽  
Ouafa Najyb ◽  
Maxime Thiery ◽  
Caroline Daneault ◽  
...  
2016 ◽  
Vol 36 (21) ◽  
pp. 2715-2727 ◽  
Author(s):  
Wojciech G. Garbacz ◽  
Peipei Lu ◽  
Tricia M. Miller ◽  
Samuel M. Poloyac ◽  
Nicholas S. Eyre ◽  
...  

The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 92
Author(s):  
Hao Xu ◽  
Yu Jiang ◽  
Xiao-Min Miao ◽  
Yi-Xi Tao ◽  
Lang Xie ◽  
...  

Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.


2017 ◽  
Vol 324 ◽  
pp. 12-25 ◽  
Author(s):  
Xupeng Bai ◽  
Weipeng Hong ◽  
Peiheng Cai ◽  
Yibei Chen ◽  
Chuncao Xu ◽  
...  

2012 ◽  
Vol 173 (1-3) ◽  
pp. 36-46 ◽  
Author(s):  
Carmine S. Chiariello ◽  
Joseph F. LaComb ◽  
Wadie F. Bahou ◽  
Valentina A. Schmidt

2010 ◽  
Vol 299 (4) ◽  
pp. G855-G866 ◽  
Author(s):  
Fengxia Ge ◽  
Shengli Zhou ◽  
Chunguang Hu ◽  
Harrison Lobdell ◽  
Paul D. Berk

Hepatic steatosis results from several processes. To assess their relative roles, hepatocellular long-chain fatty acid (LCFA) uptake was assayed in hepatocytes from C57BL/6J control mice, mice with steatosis from a high-fat diet (HFD) or 10%, 14%, or 18% ethanol (EtOH) in drinking water [functioning leptin-signaling groups (FLSGs)], and ob/ob and db/db mice. Vmax for uptake was increased vs. controls ( P < 0.001) and correlated significantly with liver weight and triglycerides (TGs) in all FLSG mice but was minimally or not increased in ob/ob and db/db mice, in which liver weights and TGs greatly exceeded projections from regressions in FLSG animals. Coefficients of determination ( R2) for these FLSG regressions suggest that increased LCFA uptake accounts for ∼80% of the increase in hepatic TGs within these groups, but increased lipogenic gene expression data suggest that enhanced LCFA synthesis is the major contributor in ob/ob and db/db. Got2, Cd36, Slc27a2, and Slc27a5 gene expression ratios were significantly upregulated in the EtOH groups, correlating with sterol regulatory element binding protein 1c ( SREBP1c) and Vmax, but only Cd36 expression was increased in HFD, ob/ob, and db/db mice. Comparison of Vmax with serum insulin and leptin suggests that both hormones contribute to upregulation of uptake in the FLSG animals. Thus, increased LCFA uptake, reflecting SREBP1c-mediated upregulation of four distinct transporters, is the dominant cause of steatosis in EtOH-fed mice. In ob/ob and db/db mice, increased LCFA synthesis appears more important. In FLSG animals, insulin upregulates hepatocellular LCFA uptake. Leptin appears to upregulate LCFA uptake or to be essential for full expression of upregulation by insulin.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 335-OR
Author(s):  
NANDINI RJ ◽  
SR RAJI ◽  
VIVEK V. PILLAI ◽  
JAYAKUMAR K. ◽  
SRINIVAS GOPALA

Sign in / Sign up

Export Citation Format

Share Document