scholarly journals A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0156341 ◽  
Author(s):  
Vinay V. Abhyankar ◽  
Meiye Wu ◽  
Chung-Yan Koh ◽  
Anson V. Hatch
2016 ◽  
Vol 202 (5-6) ◽  
pp. 269-280 ◽  
Author(s):  
Daniel Martinez Saez ◽  
Robson Tetsuo Sasaki ◽  
Adriana da Costa Neves ◽  
Marcelo Cavenaghi Pereira da Silva

Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations ‘stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.


HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 976-981 ◽  
Author(s):  
Jean Carlos Bettoni ◽  
Aike Anneliese Kretzschmar ◽  
Remi Bonnart ◽  
Ashley Shepherd ◽  
Gayle M. Volk

The availability of and easy access to diverse Vitis species are prerequisites for advances in breeding programs. Plant genebanks usually maintain collections of Vitis taxa as field collections that are vulnerable to biotic and abiotic stresses. Cryopreservation has been considered an ideal method of preserving these collections as safety back-ups in a cost-effective manner. We report a droplet vitrification method used to cryopreserve 12 Vitis species (Vitis vinifera cvs. Chardonnay and ‘Riesling, V. actinifolia, V. aestivalis, V. jacquemontii, V. flexuosa, V. palmata, V. riparia, V. rupestris, V. sylvestris, V. ficifolia, V. treleasi, and V. ×novae angeliae) using shoot tips excised from plants grown in vitro. Our results demonstrated wide applicability of this technique, with regrowth levels at least 43% for 13 genotypes representing 12 Vitis species. We demonstrated that the droplet vitrification procedure can be successfully replicated by technical staff, thus suggesting that this method is ready for implementation.


2017 ◽  
Author(s):  
Alex J. Hughes ◽  
Hikaru Miyazaki ◽  
Maxwell C. Coyle ◽  
Jesse Zhang ◽  
Matthew T. Laurie ◽  
...  

SUMMARYMany tissues fold during development into complex shapes. Engineering this process in vitro would represent an important advance for tissue engineering. We use embryonic tissue explants, finite element modeling, and 3D cell patterning techniques to show that a mechanical compaction of the ECM during mesenchymal condensation can drive tissue folding along programmed trajectories. The process requires cell contractility, generates strains at nearby tissue interfaces, and causes specific patterns of collagen alignment around and between condensates. Aligned collagen fibers support elevated tensions that promote the folding of interfaces along paths that can be predicted by finite element modeling. We demonstrate the robustness and versatility of this strategy for sculpting tissue interfaces by directing the morphogenesis of a variety of folded tissue forms from engineered patterns of mesenchymal condensates. These studies provide insight into the active mechanical properties of the embryonic mesenchyme and establish entirely new strategies for more robustly directing tissue morphogenesis ex vivo, without genetic engineering.


2020 ◽  
Vol 48 (W1) ◽  
pp. W455-W462 ◽  
Author(s):  
Sisira Kadambat Nair ◽  
Christopher Eeles ◽  
Chantal Ho ◽  
Gangesh Beri ◽  
Esther Yoo ◽  
...  

Abstract In the past few decades, major initiatives have been launched around the world to address chemical safety testing. These efforts aim to innovate and improve the efficacy of existing methods with the long-term goal of developing new risk assessment paradigms. The transcriptomic and toxicological profiling of mammalian cells has resulted in the creation of multiple toxicogenomic datasets and corresponding tools for analysis. To enable easy access and analysis of these valuable toxicogenomic data, we have developed ToxicoDB (toxicodb.ca), a free and open cloud-based platform integrating data from large in vitro toxicogenomic studies, including gene expression profiles of primary human and rat hepatocytes treated with 231 potential toxicants. To efficiently mine these complex toxicogenomic data, ToxicoDB provides users with harmonized chemical annotations, time- and dose-dependent plots of compounds across datasets, as well as the toxicity-related pathway analysis. The data in ToxicoDB have been generated using our open-source R package, ToxicoGx (github.com/bhklab/ToxicoGx). Altogether, ToxicoDB provides a streamlined process for mining highly organized, curated, and accessible toxicogenomic data that can be ultimately applied to preclinical toxicity studies and further our understanding of adverse outcomes.


2013 ◽  
Vol 16 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Clináscia Rodrigues Rocha Araújo ◽  
Thiago de Mello Silva ◽  
Monica Lopes ◽  
Paula Villela ◽  
Antônio Flávio de Carvalho Alcântara ◽  
...  

The in vitro antioxidant capacity, total phenolic content and mineral elements of the fruit peel of Myrciaria cauliflora were investigated. The antioxidant capacity was analyzed by the diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP) and β-carotene methods. The assays based on the DPPH (EC50 = 3.18 g sample/g DPPH), ABTS•+ (1017 μmol Trolox/g sample), FRAP (1676 µM Fe2SO4/g sample) and β-carotene/linoleic acid (70% of oxidation inhibition) methods indicated a high antioxidant capacity of the fruit peel extract of the plant. The Folin-Denis method was more efficient in determining the total phenolic compound contents in the different solvents than the Folin-Ciocalteu one. Extractions made with 4:1 methanol-water, 4:1 ethanol-water, 3:2 ethanol-water and 3:2 acetone-water solutions using the Folin-Denis method exhibited high contents of phenolic compounds (18.95, 14.06, 12.93 and 11.99 mg GAE/g, respectively). Potassium was the major element found in the fruit peel, followed by phosphorus, calcium, magnesium and iron, in that order. As a result, the fruit peel of M. cauliflora can be considered as an important source of natural antioxidants and essential elements of easy access for the population and for application in the food industry.


2021 ◽  
Vol 11 (20) ◽  
pp. 9485
Author(s):  
Paolo Raffa ◽  
Maria Easler ◽  
Francesca Cecchinato ◽  
Beatrice Auletta ◽  
Valentina Scattolini ◽  
...  

Decellularized skeletal muscle (dSkM) constructs have received much attention in recent years due to the versatility of their applications in vitro. In search of adequate in vitro models of the skeletal muscle tissue, the dSkM offers great advantages in terms of the preservation of native-tissue complexity, including three-dimensional organization, the presence of residual signaling molecules within the construct, and their myogenic and neurotrophic abilities. Here, we attempted to develop a 3D model of neuromuscular tissue. To do so, we repopulated rat dSkM with human primary myogenic cells along with murine fibroblasts and we coupled them with organotypic rat spinal cord samples. Such culture conditions not only maintained multiple cell type viability in a long-term experimental setup, but also resulted in functionally active construct capable of contraction. In addition, we have developed a customized culture system which enabled easy access, imaging, and analysis of in vitro engineered co-cultures. This work demonstrates the ability of dSkM to support the development of a contractile 3D in vitro model of neuromuscular tissue fit for long-term experimental evaluations.


Synthesis ◽  
2021 ◽  
Author(s):  
Vitali M. Boitsov ◽  
Alexander V. Stepakov ◽  
Siqi Wang ◽  
Alexander S. Filatov ◽  
Stanislav V. Lozovskiy ◽  
...  

AbstractThe multi-component 1,3-dipolar cycloaddition of ninhydrin, α-amino acids (or peptides), and cyclopropenes for the synthesis of spirocyclic heterocycles containing both 3-azabicyclo[3.1.0]hexane and 2H-indene-1,3-dione motifs has been developed. This method provides easy access to 3-azabicyclo[3.1.0]hexane-2,2′-indenes with complete stereoselectivity and a high degree of atom economy under mild reaction conditions. A broad range of cyclopropenes and α-amino acids have been found to be compatible with the present protocol, which offers an opportunity to create a new library of biologically significant scaffold (3-azabicyclo[3.1.0]hexane). In addition, the сomprehensive study of mechanism of azomethine ylide formation from ninhydrin and sarcosine was performed by means of M11 density functional theory (DFT) calculations. It has been revealed that experimentally observed 1-methylspiro[aziridine-2,2′-indene]-1′,3′-dione is a kinetically controlled product of this reaction and appears to act as a 1,3-dipole precursor. This theoretical study also shed light on the main transformations of the azomethine ylide derived from ninhydrin and sarcosine such as a 1,3-dipolar cycloaddition to cyclopropene dipolarophiles, a dimerization reaction and a (1+5) electrocyclization reaction. The antitumor activity of some synthesized compounds against cervical carcinoma (HeLa­) cell line was evaluated in vitro by MTS-assay.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1076
Author(s):  
Lukasz Kalkowski ◽  
Dominika Golubczyk ◽  
Joanna Kwiatkowska ◽  
Piotr Holak ◽  
Kamila Milewska ◽  
...  

Cell therapy is a promising tool for treating central nervous system (CNS) disorders; though, the translational efforts are plagued by ineffective delivery methods. Due to the large contact surface with CNS and relatively easy access, the intrathecal route of administration is attractive in extensive or global diseases such as stroke or amyotrophic lateral sclerosis (ALS). However, the precision and efficacy of this approach are still a challenge. Hydrogels were introduced to minimize cell sedimentation and improve cell viability. At the same time, contrast agents were integrated to allow image-guided injection. Here, we report using manganese ions (Mn2+) as a dual agent for cross-linking alginate-based hydrogels and magnetic resonance imaging (MRI). We performed in vitro studies to test the Mn2+ alginate hydrogel formulations for biocompatibility, injectability, MRI signal retention time, and effect on cell viability. The selected formulation was injected intrathecally into pigs under MRI control. The biocompatibility test showed a lack of immune response, and cells suspended in the hydrogel showed greater viability than monolayer culture. Moreover, Mn2+-labeled hydrogel produced a strong T1 MRI signal, which enabled MRI-guided procedure. We confirmed the utility of Mn2+ alginate hydrogel as a carrier for cells in large animals and a contrast agent at the same time.


Sign in / Sign up

Export Citation Format

Share Document